## Changes
This PR:
1. Incrementally improves the error messages shown to the user when the
volume they are referring to in `workspace.artifact_path` does not
exist.
2. Performs this validation in both `bundle validate` and `bundle
deploy` compared to before on just deployments.
3. It runs "fast" validations on `bundle deploy`, which earlier were
only run on `bundle validate`.
## Tests
Unit tests and manually. Also, existing integration tests provide
coverage (`TestUploadArtifactToVolumeNotYetDeployed`,
`TestUploadArtifactFileToVolumeThatDoesNotExist`)
Examples:
```
.venv➜ bundle-playground git:(master) ✗ cli bundle validate
Error: cannot access volume capital.whatever.my_volume: User does not have READ VOLUME on Volume 'capital.whatever.my_volume'.
at workspace.artifact_path
in databricks.yml:7:18
```
and
```
.venv➜ bundle-playground git:(master) ✗ cli bundle validate
Error: volume capital.whatever.foobar does not exist
at workspace.artifact_path
resources.volumes.foo
in databricks.yml:7:18
databricks.yml:12:7
You are using a volume in your artifact_path that is managed by
this bundle but which has not been deployed yet. Please first deploy
the volume using 'bundle deploy' and then switch over to using it in
the artifact_path.
```
## Changes
Enable gofumpt and goimports in golangci-lint and apply autofix.
This makes 'make fmt' redundant, will be cleaned up in follow up diff.
## Tests
Existing tests.
## Changes
This PR adds a warning validating that the configuration for a single
node cluster is valid for interactive, job, job-task, and pipeline
clusters.
Note: We skip the validation if a cluster policy is configured because
the policy is likely to configure `spark_conf` / `custom_tags` itself.
Note: Terrform originally only had validation for interactive, job, and
job-task clusters. This PR adding the validation for pipeline clusters
as well is new.
This PR follows the same logic as we used to have in Terraform. The
validation was removed from Terraform because we had no way to demote
the error to a warning:
https://github.com/databricks/terraform-provider-databricks/pull/4222
### Background
Single-node clusters require `spark_conf` and `custom_tags` to be
correctly set in the cluster definition for them to function optimally.
The cluster will be created even if incorrectly configured, but its
performance will not be great.
For example, if both `spark_conf` and `custom_tags` are not set and
`num_workers` is 0, then only the driver process will be launched on the
cluster compute instance thus leading to sub-optimal utilization of
available compute resources and no parallelization across worker
processes when processing a spark query.
### Issue
This PR addresses some issues reported in
https://github.com/databricks/cli/issues/1546
## Tests
Unit tests and manually.
Example output of the warning:
```
➜ bundle-playground git:(master) ✗ cli bundle validate
Warning: Single node cluster is not correctly configured
at resources.pipelines.bar.clusters[0]
in databricks.yml:29:11
num_workers should be 0 only for single-node clusters. To create a
valid single node cluster please ensure that the following properties
are correctly set in the cluster specification:
spark_conf:
spark.databricks.cluster.profile: singleNode
spark.master: local[*]
custom_tags:
ResourceClass: SingleNode
Name: foobar
Target: default
Workspace:
User: shreyas.goenka@databricks.com
Path: /Workspace/Users/shreyas.goenka@databricks.com/.bundle/foobar/default
Found 1 warning
```
## Changes
This validator checks permissions defined in top-level bundle config and
permissions set in workspace for the folders bundle is deployed to. It
raises the warning if the permissions defined in the workspace are not
defined in bundle.
This validator is executed only during `bundle validate` command.
## Tests
```
Warning: untracked permissions apply to target workspace path
The following permissions apply to the workspace folder at "/Workspace/Users/andrew.nester@databricks.com/.bundle/clusters/default" but are not configured in the bundle:
- level: CAN_MANAGE, user_name: andrew.nester@databricks.com
```
---------
Co-authored-by: Pieter Noordhuis <pieter.noordhuis@databricks.com>
## Changes
Add JobTaskClusterSpec validate mutator. It catches the case when tasks
don't which cluster to use.
For example, we can get this error with minor modifications to
`default-python` template:
```yaml
tasks:
- task_key: python_file_task
spark_python_task:
python_file: ../src/my_project_10/main.py
```
```
% databricks bundle validate
Error: Missing required cluster or environment settings
at resources.jobs.my_project_10_job.tasks[0]
in resources/my_project_10_job.yml:17:11
Task "print_github_stars" requires a cluster or an environment to run.
Specify one of the following fields: job_cluster_key, environment_key, existing_cluster_id, new_cluster.
```
We implicitly rely on "one of" validation, which does not exist. Many
bundle fields can't co-exist, for instance, specifying:
`JobTask.{existing_cluster_id,job_cluster_key}`, `Library.{whl,pypi}`,
`JobTask.{notebook_task,python_wheel_task}`, etc.
## Tests
Unit tests
---------
Co-authored-by: Pieter Noordhuis <pcnoordhuis@gmail.com>
## Changes
This PR changes `diag.Diagnostics` to allow including multiple locations
associated with the diagnostic message. The diagnostics that now return
multiple locations with this PR are:
1. Warning for unknown keys in config.
2. Use of experimental.run_as
3. Accidental sync.exludes that exclude all files.
## Tests
Existing unit tests pass. New unit test case to assert on error message
when multiple locations are included.
Example output:
```
➜ bundle-playground-2 ~/cli2/cli/cli bundle validate
Warning: You are using the legacy mode of run_as. The support for this mode is experimental and might be removed in a future release of the CLI. In order to run the DLT pipelines in your DAB as the run_as user this mode changes the owners of the pipelines to the run_as identity, which requires the user deploying the bundle to be a workspace admin, and also a Metastore admin if the pipeline target is in UC.
at experimental.use_legacy_run_as
in resources.yml:10:22
databricks.yml:13:22
Name: fix run_if
Target: default
Workspace:
User: shreyas.goenka@databricks.com
Path: /Users/shreyas.goenka@databricks.com/.bundle/fix run_if/default
Found 1 warning
```
## Changes
All these validators will return warnings as part of `bundle validate`
run
Added 2 mutators:
1. To check that if tasks use job_cluster_key it is actually defined
2. To check if there are any files to sync as part of deployment
Also added `bundle.Parallel` to run them in parallel
To make sure mutators under bundle.Parallel do not mutate config,
introduced new `ReadOnlyMutator`, `ReadOnlyBundle` and `ReadOnlyConfig`.
Example
```
databricks bundle validate -p deco-staging
Warning: unknown field: new_cluster
at resources.jobs.my_job
in bundle.yml:24:7
Warning: job_cluster_key high_cpu_workload_job_cluster is not defined
at resources.jobs.my_job.tasks[0].job_cluster_key
in bundle.yml:35:28
Warning: There are no files to sync, please check your your .gitignore and sync.exclude configuration
at sync.exclude
in bundle.yml:18:5
Name: test
Target: default
Workspace:
Host: https://acme.databricks.com
User: andrew.nester@databricks.com
Path: /Users/andrew.nester@databricks.com/.bundle/test/default
Found 3 warnings
```
## Tests
Added unit tests