Research and Applications

Mining tasks and task characteristics from electronic health record audit logs with unsupervised machine learning

Bob Chen,1,2 Wael Alrifai3,4, Cheng Gao3, Barrett Jones3, Laurie Novak, Nancy Lorenzi3, Daniel France5, Bradley Malin3,6,7, and You Chen3,7

1Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA, 2Program in Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee, USA, 3Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA, 4Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA, 5Department of Anesthesiology, Center for Research and Innovation in Systems Safety, Vanderbilt University Medical Center, Nashville, Tennessee, USA, 6Department of Biostatistics, School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA, and 7Department of Electrical Engineering and Computer Science, School of Engineering, Vanderbilt University, Nashville, Tennessee, USA

Corresponding Author: You Chen, PhD, Department of Biomedical Informatics, Vanderbilt University Medical Center, 2525 West End Ave, Suite 1475, Nashville, TN 37203, USA; you.chen@vanderbilt.edu

Received 26 June 2020; Editorial Decision 13 December 2020; Accepted 17 December 2020

ABSTRACT

Objective: The characteristics of clinician activities while interacting with electronic health record (EHR) systems can influence the time spent in EHRs and workload. This study aims to characterize EHR activities as tasks and define novel, data-driven metrics.

Materials and Methods: We leveraged unsupervised learning approaches to learn tasks from sequences of events in EHR audit logs. We developed metrics characterizing the prevalence of unique events and event repetition and applied them to categorize tasks into 4 complexity profiles. Between these profiles, Mann-Whitney U tests were applied to measure the differences in performance time, event type, and clinician prevalence, or the number of unique clinicians who were observed performing these tasks. In addition, we apply process mining frameworks paired with clinical annotations to support the validity of a sample of our identified tasks. We apply our approaches to learn tasks performed by nurses in the Vanderbilt University Medical Center neonatal intensive care unit.

Results: We examined EHR audit logs generated by 33 neonatal intensive care unit nurses resulting in 57 234 sessions and 81 tasks. Our results indicated significant differences in performance time for each observed task complexity profile. There were no significant differences in clinician prevalence or in the frequency of viewing and modifying event types between tasks of different complexities. We presented a sample of expert-reviewed, annotated task workflows supporting the interpretation of their clinical meaningfulness.

Conclusions: The use of the audit log provides an opportunity to assist hospitals in further investigating clinician activities to optimize EHR workflows.

Key words: Unsupervised learning, electronic health records, metrics, tasks, audit logs, human-computer interaction, clinician activities

© The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com
INTRODUCTION

Clinician activities involving electronic health record (EHR) systems can influence the time spent in EHRs and affect their workload, which can induce stress and burnout.1–6 Clinicians use EHRs for various functions, including chart review, documentation, messaging, orders, patient discovery, medication reconciliation, etc. Healthcare organizations (HCOs) and EHR vendors have previously investigated such usages to understand clinician EHR activities and efficiency.8–10 These investigations measure the time spent on each EHR function to build provider efficiency profiles.8–10

In recent years, EHR audit logs have become valuable resources for the investigation of clinician efficiency in EHRs.8,11,12 When a clinician accesses or moves between modules in the EHR interface, such as moving from Progress Notes to Order Entry screens, a timestamped record of that action is documented, along with clinician and patient identifiers.13–16 One example study leveraged audit logs to identify 15 tasks, including clerical (eg, assigning Current Procedural Terminology and International Classification of Diseases–Tenth Revision codes), medical care (eg, reviewing an encounter note), and inbox tasks (eg, developing a letter to a patient) completed by family medicine physicians.11 Sinsky et al.12 created a set of metrics to quantify the time spent by a physician in an EHR by using audit logs.

Our approach applies unsupervised learning methods to audit log event sequences to identify and characterize putative EHR tasks performed by clinicians. The goal of our work is to provide an informatics framework for mining audit log data to discover EHR event and session patterns, which we call tasks. We developed hierarchical metrics to describe these tasks and leveraged them to investigate task complexity and efficiency. As a pilot study, this work focuses on task complexity, task efficiency, and task prevalence among clinicians. We stratify tasks by complexity and investigate differences in task efficiency and clinician prevalence between each complexity profile. Our methods can potentially guide HCOs to optimize EHR activities or clinical workflows, by highlighting specific inefficient tasks. To test our methods, we applied our approach to identify and characterize EHR tasks for nurses involved in the care of surgical cases in the neonatal intensive care unit (NICU).

MATERIALS AND METHODS

Here, we present our approach and the metrics we developed to describe sessions and the tasks they comprise; we also characterize task complexity and efficiency profiles. We use a formal hypothesis testing framework to assess the relationship between task complexity and efficiency. Finally, we present evidence supporting the clinical meaningfulness of our discovered tasks by applying process mining algorithms and by examining the clinical workflow annotations of a subset of the involved EHRs.

Characterizing events in EHR audit logs

There are multiple types of events in EHR audit logs, such as placing medication orders, creating progress notes, assigning diagnosis, and so on.13–18 Each event belongs to 1 of the 4 access types, a categorization inherent to Epic audit log systems (Epic Systems, Verona, WI): export (eg, operating report printed), modify (eg, flowsheets data saved), system (eg, barcode scanned), or view (eg, form viewed). Intrinsically, EHR audit log data describe who did what, when it was performed, and to which patient records. An illustration of these data is provided in Table 1. The definitions of event terminology are provided in Supplementary Table A1. Because the event terminology in this study is specific to the Epic system, we provide examples of generic representations of such event terms in Supplementary Table A2, as interpreted by our NICU experts. Further clinical definitions of the Epic terms included in this study can be found at Epic’s EHR UserWeb (userweb.epic.com).

Learning sessions from events through sessionization

The notion of a session is based on the definition used in web analytics as described by Arlitt.19 A session represents a group of individual user interactions performed within a certain time frame to accomplish some given clinical function using the EHR. In our case, this group of user interactions may be EHR workflow activities (eg, administering medication orders, chart reviewing notes, inputting data into flowsheets). We utilize these sessions, each of which consists of a series of consecutive audit logged EHR events, to abstract clinically meaningful functions. We employ time-oriented sessionization to segregate sequences of events. This framework assumes that multiple consecutive events can be aggregated into a single session, given some time threshold. This assumption is consistent with our observation that clinicians perform EHR tasks in discrete sessions of consecutive actions. Further, we extend our time-oriented sessionization procedure by initializing new sessions each time a clinician accesses a different patient’s records.

Still, a challenge in time-oriented sessionization is the determination of a time interval threshold. We used a data-driven heuristic, described by Satopää et al.20 as “knee point” finding, to estimate

Table 1. Example sessions identified from EHR audit logs

<table>
<thead>
<tr>
<th>Clinician ID</th>
<th>Patient ID</th>
<th>Timestamp</th>
<th>Session Action/Event</th>
<th>Access Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>2:10 PM</td>
<td>IN BASKET MESSAGE OF ANY TYPE DISPLAYED IN HYPERSPACE</td>
<td>VIEW</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>2:11 PM</td>
<td>VISIT NAVIGATOR TEMPLATE LOADED</td>
<td>VIEW</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>2:11 PM</td>
<td>THE PROBLEM LIST IS VIEWED</td>
<td>VIEW</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>2:11 PM</td>
<td>PEND A NOTE</td>
<td>MODIFY</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>2:12 PM</td>
<td>IN BASKET MESSAGE OF ANY TYPE DISPLAYED IN HYPERSPACE</td>
<td>VIEW</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>2:12 PM</td>
<td>AN EXISTING PATIENT IS SELECTED FROM PATIENT LOOKUP</td>
<td>VIEW</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>2:14 PM</td>
<td>PATIENT SIDEBAR REPORT ACCESSED</td>
<td>VIEW</td>
</tr>
<tr>
<td>Session 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>2:18 PM</td>
<td>IN BASKET MESSAGE OF ANY TYPE DISPLAYED IN HYPERSPACE</td>
<td>VIEW</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>2:19 PM</td>
<td>PATIENT SIDEBAR REPORT ACCESSED</td>
<td>VIEW</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>2:19 PM</td>
<td>A FORM IS VIEWED</td>
<td>VIEW</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>2:21 PM</td>
<td>PATIENT DEMOGRAPHICS FORM ACCESSED</td>
<td>VIEW</td>
</tr>
</tbody>
</table>

EHR: electronic health record.
stochastic neighbor embedding (t-SNE), which is a machine learning algorithm for visualizing high-dimensional datasets. For unsupervised clustering, we used the Leiden community detection algorithm to learn session clusters from the low-dimensional representation of the data generated by t-SNE; each detected cluster of sessions is considered a task in this study.

Visualizing task event flows using process mining and sampled session validation

Because it is difficult to infer clinical meaningfulness from task-aggregated sessions, which consist of long sequences of events, we use process mining to orient each task into a process tree for workflow review. We apply an inductive miner algorithm implemented in ProM, which is an open-source framework for process mining and process tree generation. A process tree is a directed hierarchical graph in which each node is an event with child events representing potential subsequent events within the same session, thus showing the ordered relations among events. Because a task can include hundreds to thousands of sessions, we downsample tasks of interest before process tree generation, by randomly selecting 1000 sessions without replacement. Fundamentally, a task is oriented as a process using ProM, in which batches of sessions are grouped to form a single process tree. In our NICU case study, we leverage the expertise of a NICU nurse and a neonatologist with information derived from EHRs to validate a subset of sessions and tasks for clinical meaningfulness. This focused annotation was accomplished by reviewing the events in a session and analyzing the activities of clinicians that occur during the session through reviews of EHRs (eg, clinical notes, orders, measurements, diagnoses, procedures). For each session, the NICU experts provide a summary statement. We further incorporate 4 event access types (export, modify, system, and view) to subclassify the events and aid in the interpretability of clinical function per session.

Developing hierarchical metrics to describe sessions and tasks

Our metrics’ definitions depend on structured layers of abstraction, starting from raw, unabstructed audit log entries to abstracted ses-
sions and tasks. This study examined metrics on 3 levels of abstraction: system level, session level, and task level.

System-level metrics are at the lowest level of abstraction and simply describe events' characteristics on a system-wide level. Specifically, these system-level metrics describe audit log entries given the clinician and patient involved, the type of event recorded, and its timestamp.

Session-level metrics operate on groups of observed events. For example, we define a session's duration as the sum of its constituent event durations. These session-level abstractions arise from time-oriented sessionization performed on unabstractive audit log entries. Outside of time metrics, we use the number of unique events to quantify the event diversity of a session. Table 3 shows the formal definition of this session diversity coefficient \(\text{session_diversity}_\text{coef} \). Similarly, specific event types can appear in a single session repeatedly. We developed a metric to describe event repetitiveness within a session, which is formally defined in Table 3 (\(\text{session_repetition}_\text{coef} \)).

Task-level metrics are derived from the aggregation of sessions and their respective metrics. Definitions and examples of these metrics are shown in Table 3. We also describe the prevalence of a task by calculating the number of unique clinicians whose performed sessions are clustered within that task. A task affiliated with many unique clinicians demonstrates that it is highly prevalent in the workflows of a given clinical setting. This metric is designed to help HCOs identify tasks that impact many clinicians. The investigation and optimization of such tasks may be used to maximize clinician benefit compared with less prevalent tasks. A complete list of the metrics we developed at different levels can be found in our online repository (https://github.com/bobchen1701/Single_Session_Analysis).

Stratifying tasks into their respective complexity profiles

Intuitively, we provide a 2-dimensional definition of task complexity, with task diversity and task repetitiveness. We define highly complex tasks as diverse, involving many unique event types, and repetitive, involving sequences of repeated actions. Our task-level metrics can then be assembled to further stratify learned tasks with respect to complexity, formally defined by the relative rank of the task session diversity coefficient \(\text{task_session_diversity}_\text{coef} \) and task session repetitiveness \(\text{task_session_repetition}_\text{coef} \) metrics. Based on this rank-based framework, we divided the learned tasks into quadrants, representing 4 complexity profiles: low diversity/low repetition (LDLR), low diversity/high repetition (LDHR), high diversity/high repetition (HDHR), and high diversity/low repetition (HDLR).

Examining differences in duration, clinician prevalence, and event access type between tasks of different complexity profiles

This project aims to identify which types of tasks are time-consuming and impact large portions of clinicians. We hypothesized that the diversity and repetition coefficients of a task may impact the time spent on it as well as its prevalence among clinicians. Additionally, we measure the differences in event access types between tasks of different complexity profiles, which demonstrate variations in clinical workflows in utilizing EHRs to complete tasks. We conducted pairwise tests to compare the differences in the duration, the event access type representation, and the number of clinicians affiliated with tasks belonging to the 4 defined complexity profiles. Our null hypotheses are that between any pair of task complexity profiles (1) there is no difference in the task durations, (2) there is no difference in the proportion of event access types, and (3) there is no difference between the number of affiliated clinicians. Because the distributions of durations, the proportion of event access types, and

<table>
<thead>
<tr>
<th>Metric</th>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>session_time</td>
<td>s_time</td>
<td>Time to complete a session (seconds). Ex. A NICU nurse completed a session related to the in-basket-message, and the session took 56 seconds.</td>
</tr>
<tr>
<td>session_repetition_coef</td>
<td>s_rep_co</td>
<td>Total events per session/total unique events per that same session. Ex. A NICU nurse completed a session consisting of 100 events, and the unique number of events is 10, then the repetition coefficient is (\frac{100}{10} = 10).</td>
</tr>
<tr>
<td>session_diversity_coef</td>
<td>s_dst_co</td>
<td>The diversity of events within a session, relative to the diversity of events in the system. The number of unique events in a session/total number of unique events in the system. Ex. A NICU nurse completed a session with 100 unique events. The total number of unique events in the system is 300. Then the diversity coefficient is (\frac{100}{300}).</td>
</tr>
</tbody>
</table>

Task level		
task_session_time	t_s_time	Mean value of “session_time”
task_session_repetition_coef	t_s_rep_co	Mean value of “session_repetition_coef”
task_session_diversity_coef	t_s_dst_co	Mean value of “session_diversity_coef”
task_provider_diversity	t_p_dst	For a given task, the number of unique healthcare professionals who performed it. Ex. if 30 NICU nurses perform a task, then the provider diversity coefficient is 30 for the task.

Table 2. An example of a session feature matrix, with corresponding event metadata

<table>
<thead>
<tr>
<th>Provider</th>
<th>Patient</th>
<th>Timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session S</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>Event E</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>Event E</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>Event E</td>
<td>1</td>
<td>B</td>
</tr>
</tbody>
</table>

Table 3. Metrics characterizing the time duration, diversity, and repetitiveness of sessions and tasks

NICU: neonatal intensive care unit.
the number of clinicians per task are non-Gaussian, we use the Mann-Whitney \(U \) test, which is a nonparametric test for non-Gaussian distributions, and Bonferroni corrections at a significance level of .05.26

Our analyses were performed using Python 3.7. Libraries used include scikit-learn, scipy, pandas, numpy, anndata, scanpy, kneedle, and pegasuspy.20,27 Further documentation of our methods can be found o (https://github.com/bobchen1701/Single_Session_Analysis).

RESULTS

NICU case study

We introduce a case study on the management of patients, by nurses, who received surgeries and had stayed in the NICU. We studied 3 months of EHR audit logs generated by 33 NICU nurses. The total number of events, sessions, and tasks are 1 130 589, 57 234, and 81, respectively. We used a time interval threshold of 120 seconds for sessionization; this was the point of maximum curvature, or “knee point,” determined through the Kneedle algorithm for the normalized curve generated from 17 tested thresholds, ranging from 5 to 1500 seconds (Figure 2; Supplementary Table A3). In the audit logs, we detected 326 uniquely performed events. The resulting 57 234 sessions were treated as observations defined by these 326 unique events.

We calculated a Pearson’s correlation coefficient between the session-ending event distribution (frequency of an event serving as endings of sessions) and global event distribution (frequency of an event in all sessions). We observed an \(r \) value of 0.96 with a \(P \) value <.0001, which indicated that the session-ending event distribution matched global event distributions with no skew introduced through sessionization.

We selected 50 principal components, which covered over 90% of the data’s variation. These components were used to initialize a t-SNE embedding with the following parameters: perplexity = square root of the number of total observations, early exaggeration = 12, and learning_rate = 1000. We used the Leiden community detection algorithm with a resolution of 0.1 and the number of nearest neighbors set to the square root of the number of total observations.

Session- and task-level metrics describe NICU inpatient EHR activities

Figure 3 shows the 81 tasks that we learned for NICU nurses (Figure 3A) and the distribution of multiple, session-level metrics: time to perform a session (session_time, Figure 3B), repetitiveness in events (session_repetition_coef, Figure 3C), and diversity in events (session_diversity_coef, Figure 3D) listed in Table 3. As shown in Figures 3B and 3C, sessions on the right-hand side of the embedding exhibit higher repetition coefficients (Figure 3C) and also take more time to complete (Figure 3B). As shown in Figure 3D, sessions with high diversity in events are distributed across the whole embedding.

Figures 3E to 3H show the distributions of abstracted task-level metrics (described in Table 3): time to perform a task (task_session_time) (Figure 3F), repetitiveness in events (task_session_repetition_coef) (Figure 3G), and diversity in events (task_session_diversity_coef) (Figure 3H). Figure 3E shows the number of unique clinicians associated with each task, most of which have a large number of clinicians (25-30 NICU nurses) involved. There are some tasks at the bottom of the embedding that have only a small number of nurses involved, which are introduced in the following section.

NICU nurse EHR tasks can be divided into 4 complexity profiles

Figures 4 and 5 show the distributions of tasks across 4 complexity profiles. We discover 28, 27, 14, and 12 HDHR, LDLR, LDHR, and HDLR tasks, respectively. The number of HDHR and LDLR tasks is much larger than the LDHR and HDLR tasks. HDHR tasks have 34 403 sessions in total (see Supplementary Table A4), consisting of
The test results are shown in Table 4. We confirmed that there is no significant difference (with a value $P > 0.008333$) in clinician prevalence between task profiles with different diversity rankings (HD vs LD in contrast with HDHR vs HDLR or LDHR vs LDLR); though these event access types were far less common than “view” and “modify,” these results suggest that our diversity stratification of task profiles may be useful in differentiating tasks with respect to their functional niches in a clinical workflow.

Process mining and reviewing clinical workflow annotations suggest clinically meaningful task learning

By illustrating these 4 task complexity profiles, we further investigate tasks within each of these categories. We randomly selected 1 task from each of the 4 profiles to visualize as a process tree (see Supplementary Figures A3-A6). To investigate the clinical workflows involved, we randomly selected a session from each of these tasks for the expert review of their clinical workflow annotations (listed in Supplementary Tables A8-A11). We include definitions of terms used in these reviews in Supplementary Tables A1 and A2. These workflow annotations, derived from task sessions, suggest that clinically meaningful processes can be learned through our methods. The annotations of 4 task sessions are described in Supplementary Table A7. Notably, a comparison of the annotations between an HDHR session (Supplementary Table A8) and an LDLR session (Supplementary Table A11) suggests that the patient associ-
Figure 4. Task complexity profiles. Tasks are categorized into 4 complexity profiles based on their diversity and repetition coefficients. The 4 complexity profiles are high diversity/high repetition (HDHR), low diversity/low repetition (LDLR), high diversity/low repetition (HDLR), and low diversity/high repetition (LDHR). t-SNE: t-distributed stochastic neighbor embedding.

Figure 5. Tasks across the 4 complexity profiles. Each embedding highlights the tasks associated with a particular task complexity profile. Also, the 6 pairs between the 4 complexity profiles are depicted. HDHR: high diversity/high repetition; HDLR: high diversity/low repetition; LDHR: low diversity/high repetition; LDLR: low diversity/low repetition.
Table 4. The statistical significance of differences in the duration, the proportion of event access types, and the number of clinicians between pairs of tasks with different complexity levels

<table>
<thead>
<tr>
<th>Individual Clinician Prevalence per Task</th>
<th>Proportion of Views per Task</th>
<th>Proportion of Modify per Task</th>
<th>Proportion of Export per Task</th>
<th>Proportion of System per Task</th>
<th>Pairwise Test of Differences</th>
<th>P Value MWU</th>
<th>P Value MWU</th>
<th>P Value MWU</th>
<th>P Value MWU</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDHR vs LDLR</td>
<td>1.031 $\times 10^{-3}$</td>
<td><0.001*</td>
<td>2.93 $\times 10^{-3}$</td>
<td><0.001*</td>
<td>1.073 $\times 10^{-3}$</td>
<td><0.001*</td>
<td>1.073 $\times 10^{-3}$</td>
<td><0.001*</td>
<td>1.073 $\times 10^{-3}$</td>
</tr>
<tr>
<td>HDLR vs LDLR</td>
<td>2.338 $\times 10^{-2}$</td>
<td>>0.143</td>
<td>7.5</td>
<td>>0.143</td>
<td>4.014</td>
<td>>0.143</td>
<td>4.014</td>
<td>>0.143</td>
<td>4.014</td>
</tr>
<tr>
<td>HDHR vs HDLR</td>
<td>4.232 $\times 10^{-3}$</td>
<td><0.001*</td>
<td>211</td>
<td><0.001*</td>
<td>167.5</td>
<td>>0.143</td>
<td>167.5</td>
<td>>0.143</td>
<td>167.5</td>
</tr>
<tr>
<td>HDLR vs HDLR</td>
<td>1.53 $\times 10^{-3}$</td>
<td><0.001*</td>
<td>138</td>
<td><0.001*</td>
<td>173.5</td>
<td>>0.143</td>
<td>173.5</td>
<td>>0.143</td>
<td>173.5</td>
</tr>
<tr>
<td>HDHR vs LDLR</td>
<td>2.78 $\times 10^{-3}$</td>
<td><0.001*</td>
<td>278</td>
<td><0.001*</td>
<td>106.5</td>
<td>>0.143</td>
<td>106.5</td>
<td>>0.143</td>
<td>106.5</td>
</tr>
<tr>
<td>HDLR vs LDLR</td>
<td>2.29 $\times 10^{-3}$</td>
<td><0.001*</td>
<td>2.29 $\times 10^{-3}$</td>
<td><0.001*</td>
<td><0.001*</td>
<td><0.001*</td>
<td><0.001*</td>
<td><0.001*</td>
<td><0.001*</td>
</tr>
<tr>
<td>HDHR vs HDLR</td>
<td>2.511 $\times 10^{-3}$</td>
<td><0.001*</td>
<td>2.511 $\times 10^{-3}$</td>
<td><0.001*</td>
<td>2.511 $\times 10^{-3}$</td>
<td><0.001*</td>
<td>2.511 $\times 10^{-3}$</td>
<td><0.001*</td>
<td>2.511 $\times 10^{-3}$</td>
</tr>
</tbody>
</table>

*Indicates the difference is significant.

DISCUSSION

EHR utilization is one of the contributory factors for clinician workload, stress, and burnout.1,28 Studies to date have created metrics to measure the amount of time spent by clinicians in EHRs and the tasks that clinicians perform while interacting with EHR systems, primarily in outpatient and ambulatory settings. Yet few studies have focused on inpatient settings or have developed metrics to model task complexity in EHR utilization.29–31 This study created an unsupervised learning framework to identify clinician tasks performed in EHRs and developed hierarchical metrics to describe EHR task complexity, which is lacking in the existing literature. We tested the effectiveness of our metrics and approach in learning EHR tasks and task complexities for nurses in the NICU. Our hierarchical metrics capture contextual information of a task beyond its explicit, session-level content. For instance, we confirmed that clinicians require much more time to perform HDHR tasks. In our case study, over 60% of sessions exhibited this complexity profile. We further demonstrated that these tasks were associated with complex patient health conditions (patient 1 in Supplementary Table A7). Ultimately, by applying the approaches described in this study, investigators can better understand clinician activities in EHRs with reduced manual effort with the utilization of machine learning.

The scope of this study and its limitations

Our project is a pilot study, and there are limitations that we want to acknowledge as guidelines for further studies on the EHR audit logs.

First, an EHR task performed by a clinician is determined by the setting, the clinician’s role, and the patients managed. Thus, the learning of tasks should be fixed to a specific setting and specific healthcare professional. Our case study was limited to NICU nurses and their management of patients undergoing surgery; however, our approach is generalizable to other settings and clinician roles if adjustments are made to the sessionization and event annotation procedures. Similarly, task validation strategies will differ depending on the target clinician role, clinical setting, and EHR system used. This case study focuses on task complexity metrics, rather than on the content of tasks, and further validation, such as a formalized qualitative study, examining each of the 81 identified tasks is necessary to fully realize task function in a clinical workflow.

Second, some Epic terms do not have one-to-one mappings to generic terms that are utilized by non-Epic systems. The mapping of system-specific terms is an open question in EHR interoperability, but we note that specifications detailed in ASTM E2147-18,32 which was the basis of this case study’s generic term mapping, may be helpful in this type of mapping. Further limitations specific to our case study’s Epic EHR originate from the limited granularity of certain logged actions. For instance, the event “A PRINT GROUP BASED REPORT (LRP) IS VIEWED” is common in our case study’s example sessions and reflects users viewing consolidated patient information reports in a number of potential locations, such as summary reports, patient lists reports, or snapshots in the EHR. This event lacks the specificity needed to describe precise clinician actions, but highlights critical areas that audit logging systems can be improved.
Third, we note that flowsheet data in our case study are limited to manually entered vital signs and custom structured data, owing to the EHR system used. Our results show that EHR tasks involve nursing activities related to flowsheet data entry, saving, and viewing (Supplementary Table A13), but these activities do not use streams of mapped data from monitors, infusion pumps, ventilators, or other medical devices. Our analysis would benefit from the integration of more granular and diverse sources of human-computer interaction data.

Fourth, it should be recognized that clinicians may operate in care teams, performing EHR tasks simultaneously. In this study, we only focused on the learning of nonsimultaneous, individual clinician tasks. This aspect of care team–oriented tasks and the development of corresponding metrics is a natural next step for this line of research.

Last, we acknowledge that there may exist clinical events that are not captured by the EHR audit log, occurring within intervals between our defined sessions or wholly undocumented in our EHR system. To address this, we show that the majority of intersession intervals are short, which reduces the windows of time that potentially contain unrecorded clinician activities (Supplementary Figure A11 and Supplementary Table A12). Still, our event duration calculation assumes there are no time gaps between sequential actions performed within the same session, which may not be true in clinical practice. We refer to a study conducted at Vanderbilt University Medical Center33 investigating the capability of audit logs in capturing clinician activities. This study shows that the log-generated breadcrumbs encounter summary can capture all interactions documented in clinical notes, with the exception of physical exams. Based on their observations, we assume that audit logs can provide functionally accurate representations of clinician activities in EHR systems.

CONCLUSION

EHR audit logs are a rich resource that can be leveraged to understand clinician EHR activities as well as their efficient performance. Such a resource could potentially be used to model clinician workflow, stress, and burnout. Without efficient informatics tools, it is difficult to explore audit logs and mine EHR usage patterns. We developed unsupervised learning approaches and applied them to EHR audit logs to learn tasks and develop metrics describing their complexities. We designed multiple hypothesis tests based on these novel metrics to evaluate task efficiency, and we tested the effectiveness of our framework for specific healthcare professionals—NICU nurses—in the management of patients receiving surgeries, staying in the NICU. The results of the case study show that our approaches and metrics can identify complex and time-consuming tasks for future optimizations.

FUNDING

This research was supported, in part, by the National Library of Medicine of the National Institutes of Health under Award Number R01LM012854 and T32LM012412.

AUTHOR CONTRIBUTIONS

BC and YC conceived the presented idea and performed the data collection and analysis, method and metric design and development, experiment design, evaluation and interpretation of the experiments, and writing of the manuscript. WA, CG, BJ, LN, NL, DF, and BM performed evaluation and interpretation of the experiments, and editing of the manuscript.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American Medical Informatics Association online.

DATA AVAILABILITY

The datasets generated and/or analyzed during the current study are not publicly available due to patient and provider private information investigated but are available from the corresponding author on reasonable request.

ACKNOWLEDGMENTS

We thank Carrie Reale, a board-certified nurse informaticist, for providing supervision in evaluating and annotating sessions and tasks learned from the NICU setting. We also thank all researchers from the EHR audit log National Research Network led by Dr Julia Adler-Milstein and Task Type Workgroup led by Dr You Chen for providing constructive directions on the development of the unsupervised learning framework. Finally, we thank Kirill Mangutov for helpful discussions regarding human-computer interactions.

CONFLICT OF INTEREST STATEMENT

The authors have no competing interests to declare.

REFERENCES

