mirror of https://github.com/coqui-ai/TTS.git
config.json update to set model architecture and tacotron2 training parameters
This commit is contained in:
parent
5133db82ad
commit
007bef5c35
34
config.json
34
config.json
|
@ -1,6 +1,6 @@
|
||||||
{
|
{
|
||||||
"model_name": "queue",
|
"run_name": "queue",
|
||||||
"model_description": "Queue memory and change lower r incrementatlly",
|
"run_description": "Queue memory and change lower r incrementatlly",
|
||||||
|
|
||||||
"audio":{
|
"audio":{
|
||||||
// Audio processing parameters
|
// Audio processing parameters
|
||||||
|
@ -19,9 +19,9 @@
|
||||||
"symmetric_norm": false, // move normalization to range [-1, 1]
|
"symmetric_norm": false, // move normalization to range [-1, 1]
|
||||||
"max_norm": 1, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
"max_norm": 1, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
||||||
"clip_norm": true, // clip normalized values into the range.
|
"clip_norm": true, // clip normalized values into the range.
|
||||||
"mel_fmin": null, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
||||||
"mel_fmax": null, // maximum freq level for mel-spec. Tune for dataset!!
|
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
|
||||||
"do_trim_silence": true // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
"do_trim_silence": false // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
||||||
},
|
},
|
||||||
|
|
||||||
"distributed":{
|
"distributed":{
|
||||||
|
@ -29,22 +29,23 @@
|
||||||
"url": "tcp:\/\/localhost:54321"
|
"url": "tcp:\/\/localhost:54321"
|
||||||
},
|
},
|
||||||
|
|
||||||
"text_cleaner": "phoneme_cleaners",
|
"model": "Tacotron", // one of the model in models/
|
||||||
|
"grad_clip": 0.02, // upper limit for gradients for clipping.
|
||||||
"epochs": 1000, // total number of epochs to train.
|
"epochs": 1000, // total number of epochs to train.
|
||||||
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
||||||
"lr_decay": false, // if true, Noam learning rate decaying is applied through training.
|
"lr_decay": false, // if true, Noam learning rate decaying is applied through training.
|
||||||
"loss_weight": 0.0, // loss weight to emphasize lower frequencies. Lower frequencies are in general more important for speech signals.
|
|
||||||
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
|
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
|
||||||
"windowing": false, // Enables attention windowing. Used only in eval mode.
|
"windowing": false, // Enables attention windowing. Used only in eval mode.
|
||||||
"memory_size": 5, // memory queue size used to queue network predictions to feed autoregressive connection. Useful if r < 5.
|
"memory_size": 5, // TO BE IMPLEMENTED -- memory queue size used to queue network predictions to feed autoregressive connection. Useful if r < 5.
|
||||||
|
"batch_group_size": 3,
|
||||||
|
|
||||||
"batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention.
|
"batch_size": 16, // Batch size for training. Lower values than 32 might cause hard to learn attention.
|
||||||
"eval_batch_size":32,
|
"eval_batch_size":16,
|
||||||
"r": 5, // Number of frames to predict for step.
|
"r": 1, // Number of frames to predict for step.
|
||||||
"wd": 0.00001, // Weight decay weight.
|
"wd": 0.000005, // Weight decay weight.
|
||||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||||
"save_step": 5000, // Number of training steps expected to save traning stats and checkpoints.
|
"save_step": 1000, // Number of training steps expected to save traning stats and checkpoints.
|
||||||
"print_step": 50, // Number of steps to log traning on console.
|
"print_step": 10, // Number of steps to log traning on console.
|
||||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||||
"batch_group_size": 8, //Number of batches to shuffle after bucketing.
|
"batch_group_size": 8, //Number of batches to shuffle after bucketing.
|
||||||
|
|
||||||
|
@ -55,11 +56,12 @@
|
||||||
"meta_file_val": "metadata_val.csv", // DATASET-RELATED: metafile for evaluation dataloader.
|
"meta_file_val": "metadata_val.csv", // DATASET-RELATED: metafile for evaluation dataloader.
|
||||||
"dataset": "ljspeech", // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py
|
"dataset": "ljspeech", // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py
|
||||||
"min_seq_len": 0, // DATASET-RELATED: minimum text length to use in training
|
"min_seq_len": 0, // DATASET-RELATED: minimum text length to use in training
|
||||||
"max_seq_len": 300, // DATASET-RELATED: maximum text length
|
"max_seq_len": 1000, // DATASET-RELATED: maximum text length
|
||||||
"output_path": "/media/erogol/data_ssd/Data/models/ljspeech_models/", // DATASET-RELATED: output path for all training outputs.
|
"output_path": "/media/erogol/data_ssd/Data/models/ljspeech_models/", // DATASET-RELATED: output path for all training outputs.
|
||||||
"num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
"num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
||||||
"num_val_loader_workers": 4, // number of evaluation data loader processes.
|
"num_val_loader_workers": 4, // number of evaluation data loader processes.
|
||||||
"phoneme_cache_path": "ljspeech_us_phonemes", // phoneme computation is slow, therefore, it caches results in the given folder.
|
"phoneme_cache_path": "ljspeech_us_phonemes", // phoneme computation is slow, therefore, it caches results in the given folder.
|
||||||
"use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation.
|
"use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation.
|
||||||
"phoneme_language": "en-us" // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
|
"phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
|
||||||
|
"text_cleaner": "phoneme_cleaners"
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue