initial commit intro. to vocoder submodule

This commit is contained in:
erogol 2020-05-30 18:09:25 +02:00
parent e9f3a476cf
commit 0bb0ba182e
35 changed files with 3737 additions and 0 deletions

35
vocoder/README.md Normal file
View File

@ -0,0 +1,35 @@
# Mozilla TTS Vocoders (Experimental)
We provide here different vocoder implementations which can be combined with our TTS models to enable "FASTER THAN REAL-TIME" end-to-end TTS stack.
Currently, there are implementations of the following models.
- Melgan
- MultiBand-Melgan
- GAN-TTS (Discriminator Only)
It is also very easy to adapt different vocoder models as we provide here a flexible and modular (but not too modular) framework.
## Training a model
You can see here an example (Soon)[Colab Notebook]() training MelGAN with LJSpeech dataset.
In order to train a new model, you need to collecto all your wav files under a common parent folder and give this path to `data_path` field in '''config.json'''
You need to define other relevant parameters in your ```config.json``` and then start traning with the following command from Mozilla TTS root path.
```CUDA_VISIBLE_DEVICES='1' python vocoder/train.py --config_path path/to/config.json```
Exampled config files can be found under `vocoder/configs/` folder.
You can continue a previous training by the following command.
```CUDA_VISIBLE_DEVICES='1' python vocoder/train.py --continue_path path/to/your/model/folder```
You can fine-tune a pre-trained model by the following command.
```CUDA_VISIBLE_DEVICES='1' python vocoder/train.py --restore_path path/to/your/model.pth.tar```
Restoring a model starts a new training in a different output folder. It only restores model weights with the given checkpoint file. However, continuing a training starts from the same conditions the previous training run left off.
You can also follow your training runs on Tensorboard as you do with our TTS models.

0
vocoder/__init__.py Normal file
View File

View File

View File

@ -0,0 +1,138 @@
{
"run_name": "melgan",
"run_description": "melgan initial run",
// AUDIO PARAMETERS
"audio":{
// stft parameters
"num_freq": 513, // number of stft frequency levels. Size of the linear spectogram frame.
"win_length": 1024, // stft window length in ms.
"hop_length": 256, // stft window hop-lengh in ms.
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
// Audio processing parameters
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
"preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
// Silence trimming
"do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
"trim_db": 60, // threshold for timming silence. Set this according to your dataset.
// Griffin-Lim
"power": 1.5, // value to sharpen wav signals after GL algorithm.
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
// MelSpectrogram parameters
"num_mels": 80, // size of the mel spec frame.
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
// Normalization parameters
"signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
"min_level_db": -100, // lower bound for normalization
"symmetric_norm": true, // move normalization to range [-1, 1]
"max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
"clip_norm": true, // clip normalized values into the range.
"stats_path": null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
},
// DISTRIBUTED TRAINING
// "distributed":{
// "backend": "nccl",
// "url": "tcp:\/\/localhost:54321"
// },
// MODEL PARAMETERS
"use_pqmf": true,
// LOSS PARAMETERS
"use_stft_loss": true,
"use_mse_gan_loss": true,
"use_hinge_gan_loss": false,
"use_feat_match_loss": false, // use only with melgan discriminators
"stft_loss_alpha": 1,
"mse_gan_loss_alpha": 1,
"hinge_gan_loss_alpha": 1,
"feat_match_loss_alpha": 10.0,
"stft_loss_params": {
"n_ffts": [1024, 2048, 512],
"hop_lengths": [120, 240, 50],
"win_lengths": [600, 1200, 240]
},
"target_loss": "avg_G_loss", // loss value to pick the best model
// DISCRIMINATOR
"discriminator_model": "melgan_multiscale_discriminator",
"discriminator_model_params":{
"base_channels": 16,
"max_channels":1024,
"downsample_factors":[4, 4, 4, 4]
},
"steps_to_start_discriminator": 100000, // steps required to start GAN trainining.1
// "discriminator_model": "random_window_discriminator",
// "discriminator_model_params":{
// "uncond_disc_donwsample_factors": [8, 4],
// "cond_disc_downsample_factors": [[8, 4, 2, 2, 2], [8, 4, 2, 2], [8, 4, 2], [8, 4], [4, 2, 2]],
// "cond_disc_out_channels": [[128, 128, 256, 256], [128, 256, 256], [128, 256], [256], [128, 256]],
// "window_sizes": [512, 1024, 2048, 4096, 8192]
// },
// GENERATOR
"generator_model": "multiband_melgan_generator",
"generator_model_params": {
"upsample_factors":[2 ,2, 4, 4],
"num_res_blocks": 4
},
// DATASET
"data_path": "/home/erogol/Data/LJSpeech-1.1/wavs/",
"seq_len": 16384,
"pad_short": 2000,
"conv_pad": 0,
"use_noise_augment": true,
"use_cache": true,
"reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers.
// TRAINING
"batch_size": 64, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
// VALIDATION
"run_eval": true,
"test_delay_epochs": 10, //Until attention is aligned, testing only wastes computation time.
"test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences.
// OPTIMIZER
"noam_schedule": true, // use noam warmup and lr schedule.
"grad_clip": 1.0, // upper limit for gradients for clipping.
"epochs": 1000, // total number of epochs to train.
"wd": 0.000001, // Weight decay weight.
"lr_gen": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
"lr_disc": 0.0001,
"warmup_steps_gen": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
"warmup_steps_disc": 4000,
"gen_clip_grad": 10.0,
"disc_clip_grad": 10.0,
// TENSORBOARD and LOGGING
"print_step": 25, // Number of steps to log traning on console.
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
"save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
// DATA LOADING
"num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values.
"num_val_loader_workers": 4, // number of evaluation data loader processes.
"eval_split_size": 10,
// PATHS
"output_path": "/home/erogol/Models/LJSpeech/"
}

View File

View File

@ -0,0 +1,133 @@
import os
import glob
import torch
import random
import numpy as np
from torch.utils.data import Dataset, DataLoader
from multiprocessing import Manager
def create_dataloader(hp, args, train):
dataset = MelFromDisk(hp, args, train)
if train:
return DataLoader(dataset=dataset,
batch_size=hp.train.batch_size,
shuffle=True,
num_workers=hp.train.num_workers,
pin_memory=True,
drop_last=True)
else:
return DataLoader(dataset=dataset,
batch_size=1,
shuffle=False,
num_workers=hp.train.num_workers,
pin_memory=True,
drop_last=False)
class GANDataset(Dataset):
"""
GAN Dataset searchs for all the wav files under root path
and converts them to acoustic features on the fly and returns
random segments of (audio, feature) couples.
"""
def __init__(self,
ap,
items,
seq_len,
hop_len,
pad_short,
conv_pad=2,
is_training=True,
return_segments=True,
use_noise_augment=False,
use_cache=False,
verbose=False):
self.ap = ap
self.item_list = items
self.seq_len = seq_len
self.hop_len = hop_len
self.pad_short = pad_short
self.conv_pad = conv_pad
self.is_training = is_training
self.return_segments = return_segments
self.use_cache = use_cache
self.use_noise_augment = use_noise_augment
assert seq_len % hop_len == 0, " [!] seq_len has to be a multiple of hop_len."
self.feat_frame_len = seq_len // hop_len + (2 * conv_pad)
# map G and D instances
self.G_to_D_mappings = [i for i in range(len(self.item_list))]
self.shuffle_mapping()
# cache acoustic features
if use_cache:
self.create_feature_cache()
def create_feature_cache(self):
self.manager = Manager()
self.cache = self.manager.list()
self.cache += [None for _ in range(len(self.item_list))]
def find_wav_files(self, path):
return glob.glob(os.path.join(path, '**', '*.wav'), recursive=True)
def __len__(self):
return len(self.item_list)
def __getitem__(self, idx):
""" Return different items for Generator and Discriminator and
cache acoustic features """
if self.return_segments:
idx2 = self.G_to_D_mappings[idx]
item1 = self.load_item(idx)
item2 = self.load_item(idx2)
return item1, item2
else:
item1 = self.load_item(idx)
return item1
def shuffle_mapping(self):
random.shuffle(self.G_to_D_mappings)
def load_item(self, idx):
""" load (audio, feat) couple """
wavpath = self.item_list[idx]
# print(wavpath)
if self.use_cache and self.cache[idx] is not None:
audio, mel = self.cache[idx]
else:
audio = self.ap.load_wav(wavpath)
mel = self.ap.melspectrogram(audio)
if len(audio) < self.seq_len + self.pad_short:
audio = np.pad(audio, (0, self.seq_len + self.pad_short - len(audio)), \
mode='constant', constant_values=0.0)
# correct the audio length wrt padding applied in stft
audio = np.pad(audio, (0, self.hop_len), mode="edge")
audio = audio[:mel.shape[-1] * self.hop_len]
assert mel.shape[-1] * self.hop_len == audio.shape[-1], f' [!] {mel.shape[-1] * self.hop_len} vs {audio.shape[-1]}'
audio = torch.from_numpy(audio).float().unsqueeze(0)
mel = torch.from_numpy(mel).float().squeeze(0)
if self.return_segments:
max_mel_start = mel.shape[1] - self.feat_frame_len
mel_start = random.randint(0, max_mel_start)
mel_end = mel_start + self.feat_frame_len
mel = mel[:, mel_start:mel_end]
audio_start = mel_start * self.hop_len
audio = audio[:, audio_start:audio_start +
self.seq_len]
if self.use_noise_augment and self.is_training and self.return_segments:
audio = audio + (1 / 32768) * torch.randn_like(audio)
return (mel, audio)

View File

@ -0,0 +1,16 @@
import glob
import os
import numpy as np
def find_wav_files(data_path):
wav_paths = glob.glob(os.path.join(data_path, '**', '*.wav'), recursive=True)
return wav_paths
def load_wav_data(data_path, eval_split_size):
wav_paths = find_wav_files(data_path)
np.random.seed(0)
np.random.shuffle(wav_paths)
return wav_paths[:eval_split_size], wav_paths[eval_split_size:]

View File

273
vocoder/layers/losses.py Normal file
View File

@ -0,0 +1,273 @@
import torch
from torch import nn
from torch.nn import functional as F
class TorchSTFT():
def __init__(self, n_fft, hop_length, win_length, window='hann_window'):
self.n_fft = n_fft
self.hop_length = hop_length
self.win_length = win_length
self.window = getattr(torch, window)(win_length)
def __call__(self, x):
# B x D x T x 2
o = torch.stft(x,
self.n_fft,
self.hop_length,
self.win_length,
self.window,
center=True,
pad_mode="constant", # compatible with audio.py
normalized=False,
onesided=True)
M = o[:, :, :, 0]
P = o[:, :, :, 1]
return torch.sqrt(torch.clamp(M ** 2 + P ** 2, min=1e-8))
#################################
# GENERATOR LOSSES
#################################
class STFTLoss(nn.Module):
def __init__(self, n_fft, hop_length, win_length):
super(STFTLoss, self).__init__()
self.n_fft = n_fft
self.hop_length = hop_length
self.win_length = win_length
self.stft = TorchSTFT(n_fft, hop_length, win_length)
def forward(self, y_hat, y):
y_hat_M = self.stft(y_hat)
y_M = self.stft(y)
# magnitude loss
loss_mag = F.l1_loss(torch.log(y_M), torch.log(y_hat_M))
# spectral convergence loss
loss_sc = torch.norm(y_M - y_hat_M, p="fro") / torch.norm(y_M, p="fro")
return loss_mag, loss_sc
class MultiScaleSTFTLoss(torch.nn.Module):
def __init__(self,
n_ffts=[1024, 2048, 512],
hop_lengths=[120, 240, 50],
win_lengths=[600, 1200, 240]):
super(MultiScaleSTFTLoss, self).__init__()
self.loss_funcs = torch.nn.ModuleList()
for idx in range(len(n_ffts)):
self.loss_funcs.append(STFTLoss(n_ffts[idx], hop_lengths[idx], win_lengths[idx]))
def forward(self, y_hat, y):
N = len(self.loss_funcs)
loss_sc = 0
loss_mag = 0
for f in self.loss_funcs:
lm, lsc = f(y_hat, y)
loss_mag += lm
loss_sc += lsc
loss_sc /= N
loss_mag /= N
return loss_mag, loss_sc
class MSEGLoss(nn.Module):
""" Mean Squared Generator Loss """
def __init__(self,):
super(MSEGLoss, self).__init__()
def forward(self, score_fake, ):
loss_fake = torch.mean(torch.sum(torch.pow(score_fake, 2), dim=[1, 2]))
return loss_fake
class HingeGLoss(nn.Module):
""" Hinge Discriminator Loss """
def __init__(self,):
super(HingeGLoss, self).__init__()
def forward(self, score_fake, score_real):
loss_fake = torch.mean(F.relu(1. + score_fake))
return loss_fake
##################################
# DISCRIMINATOR LOSSES
##################################
class MSEDLoss(nn.Module):
""" Mean Squared Discriminator Loss """
def __init__(self,):
super(MSEDLoss, self).__init__()
def forward(self, score_fake, score_real):
loss_real = torch.mean(torch.sum(torch.pow(score_real - 1.0, 2), dim=[1, 2]))
loss_fake = torch.mean(torch.sum(torch.pow(score_fake, 2), dim=[1, 2]))
loss_d = loss_real + loss_fake
return loss_d, loss_real, loss_fake
class HingeDLoss(nn.Module):
""" Hinge Discriminator Loss """
def __init__(self,):
super(HingeDLoss, self).__init__()
def forward(self, score_fake, score_real):
loss_real = torch.mean(F.relu(1. - score_real))
loss_fake = torch.mean(F.relu(1. + score_fake))
loss_d = loss_real + loss_fake
return loss_d, loss_real, loss_fake
class MelganFeatureLoss(nn.Module):
def __init__(self, ):
super(MelganFeatureLoss, self).__init__()
def forward(self, fake_feats, real_feats):
loss_feats = 0
for fake_feat, real_feat in zip(fake_feats, real_feats):
loss_feats += hp.model.feat_match * torch.mean(torch.abs(fake_feat - real_feat))
return loss_feats
##################################
# LOSS WRAPPERS
##################################
class GeneratorLoss(nn.Module):
def __init__(self, C):
super(GeneratorLoss, self).__init__()
assert C.use_mse_gan_loss and C.use_hinge_gan_loss == False,\
" [!] Cannot use HingeGANLoss and MSEGANLoss together."
self.use_stft_loss = C.use_stft_loss
self.use_mse_gan_loss = C.use_mse_gan_loss
self.use_hinge_gan_loss = C.use_hinge_gan_loss
self.use_feat_match_loss = C.use_feat_match_loss
self.stft_loss_alpha = C.stft_loss_alpha
self.mse_gan_loss_alpha = C.mse_gan_loss_alpha
self.hinge_gan_loss_alpha = C.hinge_gan_loss_alpha
self.feat_match_loss_alpha = C.feat_match_loss_alpha
if C.use_stft_loss:
self.stft_loss = MultiScaleSTFTLoss(**C.stft_loss_params)
if C.use_mse_gan_loss:
self.mse_loss = MSEGLoss()
if C.use_hinge_gan_loss:
self.hinge_loss = HingeGLoss()
if C.use_feat_match_loss:
self.feat_match_loss = MelganFeatureLoss()
def forward(self, y_hat=None, y=None, scores_fake=None, feats_fake=None, feats_real=None):
loss = 0
return_dict = {}
# STFT Loss
if self.use_stft_loss:
stft_loss_mg, stft_loss_sc = self.stft_loss(y_hat.squeeze(1), y.squeeze(1))
return_dict['G_stft_loss_mg'] = stft_loss_mg
return_dict['G_stft_loss_sc'] = stft_loss_sc
loss += self.stft_loss_alpha * (stft_loss_mg + stft_loss_sc)
# Fake Losses
if self.use_mse_gan_loss and scores_fake is not None:
mse_fake_loss = 0
if isinstance(scores_fake, list):
for score_fake in scores_fake:
fake_loss = self.mse_loss(score_fake)
mse_fake_loss += fake_loss
else:
fake_loss = self.mse_loss(scores_fake)
mse_fake_loss = fake_loss
return_dict['G_mse_fake_loss'] = mse_fake_loss
loss += self.mse_gan_loss_alpha * mse_fake_loss
if self.use_hinge_gan_loss and not scores_fake is not None:
hinge_fake_loss = 0
if isinstance(scores_fake, list):
for score_fake in scores_fake:
fake_loss = self.hinge_loss(score_fake)
hinge_fake_loss += fake_loss
else:
fake_loss = self.hinge_loss(scores_fake)
hinge_fake_loss = fake_loss
return_dict['G_hinge_fake_loss'] = hinge_fake_loss
loss += self.hinge_gan_loss_alpha * hinge_fake_loss
# Feature Matching Loss
if self.use_feat_match_loss and not feats_fake:
feat_match_loss = self.feat_match_loss(feats_fake, feats_real)
return_dict['G_feat_match_loss'] = feat_match_loss
loss += self.feat_match_loss_alpha * feat_match_loss
return_dict['G_loss'] = loss
return return_dict
class DiscriminatorLoss(nn.Module):
def __init__(self, C):
super(DiscriminatorLoss, self).__init__()
assert C.use_mse_gan_loss and C.use_hinge_gan_loss == False,\
" [!] Cannot use HingeGANLoss and MSEGANLoss together."
self.use_mse_gan_loss = C.use_mse_gan_loss
self.use_hinge_gan_loss = C.use_hinge_gan_loss
self.mse_gan_loss_alpha = C.mse_gan_loss_alpha
self.hinge_gan_loss_alpha = C.hinge_gan_loss_alpha
if C.use_mse_gan_loss:
self.mse_loss = MSEDLoss()
if C.use_hinge_gan_loss:
self.hinge_loss = HingeDLoss()
def forward(self, scores_fake, scores_real):
loss = 0
return_dict = {}
if self.use_mse_gan_loss:
mse_gan_loss = 0
mse_gan_real_loss = 0
mse_gan_fake_loss = 0
if isinstance(scores_fake, list):
for score_fake, score_real in zip(scores_fake, scores_real):
total_loss, real_loss, fake_loss = self.mse_loss(score_fake, score_real)
mse_gan_loss += total_loss
mse_gan_real_loss += real_loss
mse_gan_fake_loss += fake_loss
else:
total_loss, real_loss, fake_loss = self.mse_loss(scores_fake, scores_real)
mse_gan_loss = total_loss
mse_gan_real_loss = real_loss
mse_gan_fake_loss = fake_loss
return_dict['D_mse_gan_loss'] = mse_gan_loss
return_dict['D_mse_gan_real_loss'] = mse_gan_real_loss
return_dict['D_mse_gan_fake_loss'] = mse_gan_fake_loss
loss += self.mse_gan_loss_alpha * mse_gan_loss
if self.use_hinge_gan_loss:
hinge_gan_loss = 0
hinge_gan_real_loss = 0
hinge_gan_fake_loss = 0
if isinstance(scores_fake, list):
for score_fake, score_real in zip(scores_fake, scores_real):
total_loss, real_loss, fake_loss = self.hinge_loss(score_fake, score_real)
hinge_gan_loss += total_loss
hinge_gan_real_loss += real_loss
hinge_gan_fake_loss += fake_loss
else:
total_loss, real_loss, fake_loss = self.hinge_loss(scores_fake, scores_real)
hinge_gan_loss = total_loss
hinge_gan_real_loss = real_loss
hinge_gan_fake_loss = fake_loss
return_dict['D_hinge_gan_loss'] = hinge_gan_loss
return_dict['D_hinge_gan_real_loss'] = hinge_gan_real_loss
return_dict['D_hinge_gan_fake_loss'] = hinge_gan_fake_loss
loss += self.hinge_gan_loss_alpha * hinge_gan_loss
return_dict['D_loss'] = loss
return return_dict

48
vocoder/layers/melgan.py Normal file
View File

@ -0,0 +1,48 @@
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn.utils import weight_norm
class ResidualStack(nn.Module):
def __init__(self, channels, num_res_blocks, kernel_size):
super(ResidualStack, self).__init__()
assert (kernel_size - 1) % 2 == 0, " [!] kernel_size has to be odd."
base_padding = (kernel_size - 1) // 2
self.blocks = nn.ModuleList()
for idx in range(num_res_blocks):
layer_kernel_size = kernel_size
layer_dilation = layer_kernel_size**idx
layer_padding = base_padding * layer_dilation
self.blocks += [nn.Sequential(
nn.LeakyReLU(0.2),
nn.ReflectionPad1d(layer_padding),
weight_norm(
nn.Conv1d(channels,
channels,
kernel_size=kernel_size,
dilation=layer_padding,
bias=True)),
nn.LeakyReLU(0.2),
weight_norm(
nn.Conv1d(channels, channels, kernel_size=1, bias=True)),
)]
self.shortcuts = nn.ModuleList([
weight_norm(nn.Conv1d(channels, channels, kernel_size=1,
bias=True)) for i in range(num_res_blocks)
])
def forward(self, x):
for block, shortcut in zip(self.blocks, self.shortcuts):
x = shortcut(x) + block(x)
return x
def remove_weight_norm(self):
for block, shortcut in zip(self.blocks, self.shortcuts):
nn.utils.remove_weight_norm(block[2])
nn.utils.remove_weight_norm(block[4])
nn.utils.remove_weight_norm(shortcut)

55
vocoder/layers/pqmf.py Normal file
View File

@ -0,0 +1,55 @@
"""Pseudo QMF modules."""
import numpy as np
import torch
import torch.nn.functional as F
from scipy import signal as sig
# adapted from
# https://github.com/kan-bayashi/ParallelWaveGAN/tree/master/parallel_wavegan
class PQMF(torch.nn.Module):
def __init__(self, N=4, taps=62, cutoff=0.15, beta=9.0):
super(PQMF, self).__init__()
self.N = N
self.taps = taps
self.cutoff = cutoff
self.beta = beta
QMF = sig.firwin(taps + 1, cutoff, window=('kaiser', beta))
H = np.zeros((N, len(QMF)))
G = np.zeros((N, len(QMF)))
for k in range(N):
constant_factor = (2 * k + 1) * (np.pi /
(2 * N)) * (np.arange(taps + 1) -
((taps - 1) / 2))
phase = (-1)**k * np.pi / 4
H[k] = 2 * QMF * np.cos(constant_factor + phase)
G[k] = 2 * QMF * np.cos(constant_factor - phase)
H = torch.from_numpy(H[:, None, :]).float()
G = torch.from_numpy(G[None, :, :]).float()
self.register_buffer("H", H)
self.register_buffer("G", G)
updown_filter = torch.zeros((N, N, N)).float()
for k in range(N):
updown_filter[k, k, 0] = 1.0
self.register_buffer("updown_filter", updown_filter)
self.N = N
self.pad_fn = torch.nn.ConstantPad1d(taps // 2, 0.0)
def analysis(self, x):
return F.conv1d(x, self.H, padding=self.taps // 2, stride=self.N)
def synthesis(self, x):
x = F.conv_transpose1d(x,
self.updown_filter * self.N,
stride=self.N)
x = F.conv1d(x, self.G, padding=self.taps // 2)
return x

127
vocoder/layers/pqmf2.py Normal file
View File

@ -0,0 +1,127 @@
# -*- coding: utf-8 -*-
# Copyright 2020 Tomoki Hayashi
# MIT License (https://opensource.org/licenses/MIT)
"""Pseudo QMF modules."""
import numpy as np
import torch
import torch.nn.functional as F
from scipy.signal import kaiser
def design_prototype_filter(taps=62, cutoff_ratio=0.15, beta=9.0):
"""Design prototype filter for PQMF.
This method is based on `A Kaiser window approach for the design of prototype
filters of cosine modulated filterbanks`_.
Args:
taps (int): The number of filter taps.
cutoff_ratio (float): Cut-off frequency ratio.
beta (float): Beta coefficient for kaiser window.
Returns:
ndarray: Impluse response of prototype filter (taps + 1,).
.. _`A Kaiser window approach for the design of prototype filters of cosine modulated filterbanks`:
https://ieeexplore.ieee.org/abstract/document/681427
"""
# check the arguments are valid
assert taps % 2 == 0, "The number of taps mush be even number."
assert 0.0 < cutoff_ratio < 1.0, "Cutoff ratio must be > 0.0 and < 1.0."
# make initial filter
omega_c = np.pi * cutoff_ratio
with np.errstate(invalid='ignore'):
h_i = np.sin(omega_c * (np.arange(taps + 1) - 0.5 * taps)) \
/ (np.pi * (np.arange(taps + 1) - 0.5 * taps))
h_i[taps // 2] = np.cos(0) * cutoff_ratio # fix nan due to indeterminate form
# apply kaiser window
w = kaiser(taps + 1, beta)
h = h_i * w
return h
class PQMF(torch.nn.Module):
"""PQMF module.
This module is based on `Near-perfect-reconstruction pseudo-QMF banks`_.
.. _`Near-perfect-reconstruction pseudo-QMF banks`:
https://ieeexplore.ieee.org/document/258122
"""
def __init__(self, subbands=4, taps=62, cutoff_ratio=0.15, beta=9.0):
"""Initilize PQMF module.
Args:
subbands (int): The number of subbands.
taps (int): The number of filter taps.
cutoff_ratio (float): Cut-off frequency ratio.
beta (float): Beta coefficient for kaiser window.
"""
super(PQMF, self).__init__()
# define filter coefficient
h_proto = design_prototype_filter(taps, cutoff_ratio, beta)
h_analysis = np.zeros((subbands, len(h_proto)))
h_synthesis = np.zeros((subbands, len(h_proto)))
for k in range(subbands):
h_analysis[k] = 2 * h_proto * np.cos((2 * k + 1) * (np.pi / (2 * subbands)) * (np.arange(taps + 1) - ((taps - 1) / 2)) + (-1) ** k * np.pi / 4)
h_synthesis[k] = 2 * h_proto * np.cos((2 * k + 1) * (np.pi / (2 * subbands)) * (np.arange(taps + 1) - ((taps - 1) / 2)) - (-1) ** k * np.pi / 4)
# convert to tensor
analysis_filter = torch.from_numpy(h_analysis).float().unsqueeze(1)
synthesis_filter = torch.from_numpy(h_synthesis).float().unsqueeze(0)
# register coefficients as beffer
self.register_buffer("analysis_filter", analysis_filter)
self.register_buffer("synthesis_filter", synthesis_filter)
# filter for downsampling & upsampling
updown_filter = torch.zeros((subbands, subbands, subbands)).float()
for k in range(subbands):
updown_filter[k, k, 0] = 1.0
self.register_buffer("updown_filter", updown_filter)
self.subbands = subbands
# keep padding info
self.pad_fn = torch.nn.ConstantPad1d(taps // 2, 0.0)
def analysis(self, x):
"""Analysis with PQMF.
Args:
x (Tensor): Input tensor (B, 1, T).
Returns:
Tensor: Output tensor (B, subbands, T // subbands).
"""
x = F.conv1d(self.pad_fn(x), self.analysis_filter)
return F.conv1d(x, self.updown_filter, stride=self.subbands)
def synthesis(self, x):
"""Synthesis with PQMF.
Args:
x (Tensor): Input tensor (B, subbands, T // subbands).
Returns:
Tensor: Output tensor (B, 1, T).
"""
# NOTE(kan-bayashi): Power will be dreased so here multipy by # subbands.
# Not sure this is the correct way, it is better to check again.
# TODO(kan-bayashi): Understand the reconstruction procedure
x = F.conv_transpose1d(x, self.updown_filter * self.subbands, stride=self.subbands)
x = F.conv1d(self.pad_fn(x), self.synthesis_filter)
return x

640
vocoder/layers/qmf.dat Normal file
View File

@ -0,0 +1,640 @@
0.0000000e+000
-5.5252865e-004
-5.6176926e-004
-4.9475181e-004
-4.8752280e-004
-4.8937912e-004
-5.0407143e-004
-5.2265643e-004
-5.4665656e-004
-5.6778026e-004
-5.8709305e-004
-6.1327474e-004
-6.3124935e-004
-6.5403334e-004
-6.7776908e-004
-6.9416146e-004
-7.1577365e-004
-7.2550431e-004
-7.4409419e-004
-7.4905981e-004
-7.6813719e-004
-7.7248486e-004
-7.8343323e-004
-7.7798695e-004
-7.8036647e-004
-7.8014496e-004
-7.7579773e-004
-7.6307936e-004
-7.5300014e-004
-7.3193572e-004
-7.2153920e-004
-6.9179375e-004
-6.6504151e-004
-6.3415949e-004
-5.9461189e-004
-5.5645764e-004
-5.1455722e-004
-4.6063255e-004
-4.0951215e-004
-3.5011759e-004
-2.8969812e-004
-2.0983373e-004
-1.4463809e-004
-6.1733441e-005
1.3494974e-005
1.0943831e-004
2.0430171e-004
2.9495311e-004
4.0265402e-004
5.1073885e-004
6.2393761e-004
7.4580259e-004
8.6084433e-004
9.8859883e-004
1.1250155e-003
1.2577885e-003
1.3902495e-003
1.5443220e-003
1.6868083e-003
1.8348265e-003
1.9841141e-003
2.1461584e-003
2.3017255e-003
2.4625617e-003
2.6201759e-003
2.7870464e-003
2.9469448e-003
3.1125421e-003
3.2739613e-003
3.4418874e-003
3.6008268e-003
3.7603923e-003
3.9207432e-003
4.0819753e-003
4.2264269e-003
4.3730720e-003
4.5209853e-003
4.6606461e-003
4.7932561e-003
4.9137604e-003
5.0393023e-003
5.1407354e-003
5.2461166e-003
5.3471681e-003
5.4196776e-003
5.4876040e-003
5.5475715e-003
5.5938023e-003
5.6220643e-003
5.6455197e-003
5.6389200e-003
5.6266114e-003
5.5917129e-003
5.5404364e-003
5.4753783e-003
5.3838976e-003
5.2715759e-003
5.1382275e-003
4.9839688e-003
4.8109469e-003
4.6039530e-003
4.3801862e-003
4.1251642e-003
3.8456408e-003
3.5401247e-003
3.2091886e-003
2.8446758e-003
2.4508540e-003
2.0274176e-003
1.5784683e-003
1.0902329e-003
5.8322642e-004
2.7604519e-005
-5.4642809e-004
-1.1568136e-003
-1.8039473e-003
-2.4826724e-003
-3.1933778e-003
-3.9401124e-003
-4.7222596e-003
-5.5337211e-003
-6.3792293e-003
-7.2615817e-003
-8.1798233e-003
-9.1325330e-003
-1.0115022e-002
-1.1131555e-002
-1.2185000e-002
-1.3271822e-002
-1.4390467e-002
-1.5540555e-002
-1.6732471e-002
-1.7943338e-002
-1.9187243e-002
-2.0453179e-002
-2.1746755e-002
-2.3068017e-002
-2.4416099e-002
-2.5787585e-002
-2.7185943e-002
-2.8607217e-002
-3.0050266e-002
-3.1501761e-002
-3.2975408e-002
-3.4462095e-002
-3.5969756e-002
-3.7481285e-002
-3.9005368e-002
-4.0534917e-002
-4.2064909e-002
-4.3609754e-002
-4.5148841e-002
-4.6684303e-002
-4.8216572e-002
-4.9738576e-002
-5.1255616e-002
-5.2763075e-002
-5.4245277e-002
-5.5717365e-002
-5.7161645e-002
-5.8591568e-002
-5.9983748e-002
-6.1345517e-002
-6.2685781e-002
-6.3971590e-002
-6.5224711e-002
-6.6436751e-002
-6.7607599e-002
-6.8704383e-002
-6.9763024e-002
-7.0762871e-002
-7.1700267e-002
-7.2568258e-002
-7.3362026e-002
-7.4100364e-002
-7.4745256e-002
-7.5313734e-002
-7.5800836e-002
-7.6199248e-002
-7.6499217e-002
-7.6709349e-002
-7.6817398e-002
-7.6823001e-002
-7.6720492e-002
-7.6505072e-002
-7.6174832e-002
-7.5730576e-002
-7.5157626e-002
-7.4466439e-002
-7.3640601e-002
-7.2677464e-002
-7.1582636e-002
-7.0353307e-002
-6.8966401e-002
-6.7452502e-002
-6.5769067e-002
-6.3944481e-002
-6.1960278e-002
-5.9816657e-002
-5.7515269e-002
-5.5046003e-002
-5.2409382e-002
-4.9597868e-002
-4.6630331e-002
-4.3476878e-002
-4.0145828e-002
-3.6641812e-002
-3.2958393e-002
-2.9082401e-002
-2.5030756e-002
-2.0799707e-002
-1.6370126e-002
-1.1762383e-002
-6.9636862e-003
-1.9765601e-003
3.2086897e-003
8.5711749e-003
1.4128883e-002
1.9883413e-002
2.5822729e-002
3.1953127e-002
3.8277657e-002
4.4780682e-002
5.1480418e-002
5.8370533e-002
6.5440985e-002
7.2694330e-002
8.0137293e-002
8.7754754e-002
9.5553335e-002
1.0353295e-001
1.1168269e-001
1.2000780e-001
1.2850029e-001
1.3715518e-001
1.4597665e-001
1.5496071e-001
1.6409589e-001
1.7338082e-001
1.8281725e-001
1.9239667e-001
2.0212502e-001
2.1197359e-001
2.2196527e-001
2.3206909e-001
2.4230169e-001
2.5264803e-001
2.6310533e-001
2.7366340e-001
2.8432142e-001
2.9507167e-001
3.0590986e-001
3.1682789e-001
3.2781137e-001
3.3887227e-001
3.4999141e-001
3.6115899e-001
3.7237955e-001
3.8363500e-001
3.9492118e-001
4.0623177e-001
4.1756969e-001
4.2891199e-001
4.4025538e-001
4.5159965e-001
4.6293081e-001
4.7424532e-001
4.8552531e-001
4.9677083e-001
5.0798175e-001
5.1912350e-001
5.3022409e-001
5.4125534e-001
5.5220513e-001
5.6307891e-001
5.7385241e-001
5.8454032e-001
5.9511231e-001
6.0557835e-001
6.1591099e-001
6.2612427e-001
6.3619801e-001
6.4612697e-001
6.5590163e-001
6.6551399e-001
6.7496632e-001
6.8423533e-001
6.9332824e-001
7.0223887e-001
7.1094104e-001
7.1944626e-001
7.2774489e-001
7.3582118e-001
7.4368279e-001
7.5131375e-001
7.5870808e-001
7.6586749e-001
7.7277809e-001
7.7942875e-001
7.8583531e-001
7.9197358e-001
7.9784664e-001
8.0344858e-001
8.0876950e-001
8.1381913e-001
8.1857760e-001
8.2304199e-001
8.2722753e-001
8.3110385e-001
8.3469374e-001
8.3797173e-001
8.4095414e-001
8.4362383e-001
8.4598185e-001
8.4803158e-001
8.4978052e-001
8.5119715e-001
8.5230470e-001
8.5310209e-001
8.5357206e-001
8.5373856e-001
8.5357206e-001
8.5310209e-001
8.5230470e-001
8.5119715e-001
8.4978052e-001
8.4803158e-001
8.4598185e-001
8.4362383e-001
8.4095414e-001
8.3797173e-001
8.3469374e-001
8.3110385e-001
8.2722753e-001
8.2304199e-001
8.1857760e-001
8.1381913e-001
8.0876950e-001
8.0344858e-001
7.9784664e-001
7.9197358e-001
7.8583531e-001
7.7942875e-001
7.7277809e-001
7.6586749e-001
7.5870808e-001
7.5131375e-001
7.4368279e-001
7.3582118e-001
7.2774489e-001
7.1944626e-001
7.1094104e-001
7.0223887e-001
6.9332824e-001
6.8423533e-001
6.7496632e-001
6.6551399e-001
6.5590163e-001
6.4612697e-001
6.3619801e-001
6.2612427e-001
6.1591099e-001
6.0557835e-001
5.9511231e-001
5.8454032e-001
5.7385241e-001
5.6307891e-001
5.5220513e-001
5.4125534e-001
5.3022409e-001
5.1912350e-001
5.0798175e-001
4.9677083e-001
4.8552531e-001
4.7424532e-001
4.6293081e-001
4.5159965e-001
4.4025538e-001
4.2891199e-001
4.1756969e-001
4.0623177e-001
3.9492118e-001
3.8363500e-001
3.7237955e-001
3.6115899e-001
3.4999141e-001
3.3887227e-001
3.2781137e-001
3.1682789e-001
3.0590986e-001
2.9507167e-001
2.8432142e-001
2.7366340e-001
2.6310533e-001
2.5264803e-001
2.4230169e-001
2.3206909e-001
2.2196527e-001
2.1197359e-001
2.0212502e-001
1.9239667e-001
1.8281725e-001
1.7338082e-001
1.6409589e-001
1.5496071e-001
1.4597665e-001
1.3715518e-001
1.2850029e-001
1.2000780e-001
1.1168269e-001
1.0353295e-001
9.5553335e-002
8.7754754e-002
8.0137293e-002
7.2694330e-002
6.5440985e-002
5.8370533e-002
5.1480418e-002
4.4780682e-002
3.8277657e-002
3.1953127e-002
2.5822729e-002
1.9883413e-002
1.4128883e-002
8.5711749e-003
3.2086897e-003
-1.9765601e-003
-6.9636862e-003
-1.1762383e-002
-1.6370126e-002
-2.0799707e-002
-2.5030756e-002
-2.9082401e-002
-3.2958393e-002
-3.6641812e-002
-4.0145828e-002
-4.3476878e-002
-4.6630331e-002
-4.9597868e-002
-5.2409382e-002
-5.5046003e-002
-5.7515269e-002
-5.9816657e-002
-6.1960278e-002
-6.3944481e-002
-6.5769067e-002
-6.7452502e-002
-6.8966401e-002
-7.0353307e-002
-7.1582636e-002
-7.2677464e-002
-7.3640601e-002
-7.4466439e-002
-7.5157626e-002
-7.5730576e-002
-7.6174832e-002
-7.6505072e-002
-7.6720492e-002
-7.6823001e-002
-7.6817398e-002
-7.6709349e-002
-7.6499217e-002
-7.6199248e-002
-7.5800836e-002
-7.5313734e-002
-7.4745256e-002
-7.4100364e-002
-7.3362026e-002
-7.2568258e-002
-7.1700267e-002
-7.0762871e-002
-6.9763024e-002
-6.8704383e-002
-6.7607599e-002
-6.6436751e-002
-6.5224711e-002
-6.3971590e-002
-6.2685781e-002
-6.1345517e-002
-5.9983748e-002
-5.8591568e-002
-5.7161645e-002
-5.5717365e-002
-5.4245277e-002
-5.2763075e-002
-5.1255616e-002
-4.9738576e-002
-4.8216572e-002
-4.6684303e-002
-4.5148841e-002
-4.3609754e-002
-4.2064909e-002
-4.0534917e-002
-3.9005368e-002
-3.7481285e-002
-3.5969756e-002
-3.4462095e-002
-3.2975408e-002
-3.1501761e-002
-3.0050266e-002
-2.8607217e-002
-2.7185943e-002
-2.5787585e-002
-2.4416099e-002
-2.3068017e-002
-2.1746755e-002
-2.0453179e-002
-1.9187243e-002
-1.7943338e-002
-1.6732471e-002
-1.5540555e-002
-1.4390467e-002
-1.3271822e-002
-1.2185000e-002
-1.1131555e-002
-1.0115022e-002
-9.1325330e-003
-8.1798233e-003
-7.2615817e-003
-6.3792293e-003
-5.5337211e-003
-4.7222596e-003
-3.9401124e-003
-3.1933778e-003
-2.4826724e-003
-1.8039473e-003
-1.1568136e-003
-5.4642809e-004
2.7604519e-005
5.8322642e-004
1.0902329e-003
1.5784683e-003
2.0274176e-003
2.4508540e-003
2.8446758e-003
3.2091886e-003
3.5401247e-003
3.8456408e-003
4.1251642e-003
4.3801862e-003
4.6039530e-003
4.8109469e-003
4.9839688e-003
5.1382275e-003
5.2715759e-003
5.3838976e-003
5.4753783e-003
5.5404364e-003
5.5917129e-003
5.6266114e-003
5.6389200e-003
5.6455197e-003
5.6220643e-003
5.5938023e-003
5.5475715e-003
5.4876040e-003
5.4196776e-003
5.3471681e-003
5.2461166e-003
5.1407354e-003
5.0393023e-003
4.9137604e-003
4.7932561e-003
4.6606461e-003
4.5209853e-003
4.3730720e-003
4.2264269e-003
4.0819753e-003
3.9207432e-003
3.7603923e-003
3.6008268e-003
3.4418874e-003
3.2739613e-003
3.1125421e-003
2.9469448e-003
2.7870464e-003
2.6201759e-003
2.4625617e-003
2.3017255e-003
2.1461584e-003
1.9841141e-003
1.8348265e-003
1.6868083e-003
1.5443220e-003
1.3902495e-003
1.2577885e-003
1.1250155e-003
9.8859883e-004
8.6084433e-004
7.4580259e-004
6.2393761e-004
5.1073885e-004
4.0265402e-004
2.9495311e-004
2.0430171e-004
1.0943831e-004
1.3494974e-005
-6.1733441e-005
-1.4463809e-004
-2.0983373e-004
-2.8969812e-004
-3.5011759e-004
-4.0951215e-004
-4.6063255e-004
-5.1455722e-004
-5.5645764e-004
-5.9461189e-004
-6.3415949e-004
-6.6504151e-004
-6.9179375e-004
-7.2153920e-004
-7.3193572e-004
-7.5300014e-004
-7.6307936e-004
-7.7579773e-004
-7.8014496e-004
-7.8036647e-004
-7.7798695e-004
-7.8343323e-004
-7.7248486e-004
-7.6813719e-004
-7.4905981e-004
-7.4409419e-004
-7.2550431e-004
-7.1577365e-004
-6.9416146e-004
-6.7776908e-004
-6.5403334e-004
-6.3124935e-004
-6.1327474e-004
-5.8709305e-004
-5.6778026e-004
-5.4665656e-004
-5.2265643e-004
-5.0407143e-004
-4.8937912e-004
-4.8752280e-004
-4.9475181e-004
-5.6176926e-004
-5.5252865e-004

View File

View File

@ -0,0 +1,80 @@
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn.utils import weight_norm
class MelganDiscriminator(nn.Module):
def __init__(self,
in_channels=1,
out_channels=1,
kernel_sizes=(5, 3),
base_channels=16,
max_channels=1024,
downsample_factors=(4, 4, 4, 4)):
super(MelganDiscriminator, self).__init__()
self.layers = nn.ModuleList()
layer_kernel_size = np.prod(kernel_sizes)
layer_padding = (layer_kernel_size - 1) // 2
# initial layer
self.layers += [
nn.Sequential(
nn.ReflectionPad1d(layer_padding),
weight_norm(
nn.Conv1d(in_channels,
base_channels,
layer_kernel_size,
stride=1)), nn.LeakyReLU(0.2, inplace=True))
]
# downsampling layers
layer_in_channels = base_channels
for idx, downsample_factor in enumerate(downsample_factors):
layer_out_channels = min(layer_in_channels * downsample_factor,
max_channels)
layer_kernel_size = downsample_factor * 10 + 1
layer_padding = (layer_kernel_size - 1) // 2
layer_groups = layer_in_channels // 4
self.layers += [
nn.Sequential(
weight_norm(
nn.Conv1d(layer_in_channels,
layer_out_channels,
kernel_size=layer_kernel_size,
stride=downsample_factor,
padding=layer_padding,
groups=layer_groups)),
nn.LeakyReLU(0.2, inplace=True))
]
layer_in_channels = layer_out_channels
# last 2 layers
layer_padding1 = (kernel_sizes[0] - 1) // 2
layer_padding2 = (kernel_sizes[1] - 1) // 2
self.layers += [
nn.Sequential(
weight_norm(
nn.Conv1d(layer_out_channels,
layer_out_channels,
kernel_size=kernel_sizes[0],
stride=1,
padding=layer_padding1)),
nn.LeakyReLU(0.2, inplace=True),
),
weight_norm(
nn.Conv1d(layer_out_channels,
out_channels,
kernel_size=kernel_sizes[1],
stride=1,
padding=layer_padding2)),
]
def forward(self, x):
feats = []
for layer in self.layers:
x = layer(x)
feats.append(x)
return x, feats

View File

@ -0,0 +1,91 @@
import math
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn.utils import weight_norm
from TTS.vocoder.layers.melgan import ResidualStack
class MelganGenerator(nn.Module):
def __init__(self,
in_channels=80,
out_channels=1,
proj_kernel=7,
base_channels=512,
upsample_factors=(8, 8, 2, 2),
res_kernel=3,
num_res_blocks=3):
super(MelganGenerator, self).__init__()
# assert model parameters
assert (proj_kernel -
1) % 2 == 0, " [!] proj_kernel should be an odd number."
# setup additional model parameters
base_padding = (proj_kernel - 1) // 2
act_slope = 0.2
self.inference_padding = 2
# initial layer
layers = []
layers += [
nn.ReflectionPad1d(base_padding),
weight_norm(
nn.Conv1d(in_channels,
base_channels,
kernel_size=proj_kernel,
stride=1,
bias=True))
]
# upsampling layers and residual stacks
for idx, upsample_factor in enumerate(upsample_factors):
layer_in_channels = base_channels // (2**idx)
layer_out_channels = base_channels // (2**(idx + 1))
layer_filter_size = upsample_factor * 2
layer_stride = upsample_factor
layer_output_padding = upsample_factor % 2
layer_padding = upsample_factor // 2 + layer_output_padding
layers += [
nn.LeakyReLU(act_slope),
weight_norm(
nn.ConvTranspose1d(layer_in_channels,
layer_out_channels,
layer_filter_size,
stride=layer_stride,
padding=layer_padding,
output_padding=layer_output_padding,
bias=True)),
ResidualStack(
channels=layer_out_channels,
num_res_blocks=num_res_blocks,
kernel_size=res_kernel
)
]
layers += [nn.LeakyReLU(act_slope)]
# final layer
layers += [
nn.ReflectionPad1d(base_padding),
weight_norm(
nn.Conv1d(layer_out_channels,
out_channels,
proj_kernel,
stride=1,
bias=True)),
nn.Tanh()
]
self.layers = nn.Sequential(*layers)
def forward(self, cond_features):
return self.layers(cond_features)
def inference(self, cond_features):
cond_features = cond_features.to(self.layers[1].weight.device)
cond_features = torch.nn.functional.pad(
cond_features,
(self.inference_padding, self.inference_padding),
'replicate')
return self.layers(cond_features)

View File

@ -0,0 +1,41 @@
from torch import nn
from TTS.vocoder.models.melgan_discriminator import MelganDiscriminator
class MelganMultiscaleDiscriminator(nn.Module):
def __init__(self,
in_channels=1,
out_channels=1,
num_scales=3,
kernel_sizes=(5, 3),
base_channels=16,
max_channels=1024,
downsample_factors=(4, 4, 4, 4),
pooling_kernel_size=4,
pooling_stride=2,
pooling_padding=1):
super(MelganMultiscaleDiscriminator, self).__init__()
self.discriminators = nn.ModuleList([
MelganDiscriminator(in_channels=in_channels,
out_channels=out_channels,
kernel_sizes=kernel_sizes,
base_channels=base_channels,
max_channels=max_channels,
downsample_factors=downsample_factors)
for _ in range(num_scales)
])
self.pooling = nn.AvgPool1d(kernel_size=pooling_kernel_size, stride=pooling_stride, padding=pooling_padding, count_include_pad=False)
def forward(self, x):
scores = list()
feats = list()
for disc in self.discriminators:
score, feat = disc(x)
scores.append(score)
feats.append(feat)
x = self.pooling(x)
return scores, feats

View File

@ -0,0 +1,38 @@
import torch
from TTS.vocoder.models.melgan_generator import MelganGenerator
from TTS.vocoder.layers.pqmf import PQMF
class MultibandMelganGenerator(MelganGenerator):
def __init__(self,
in_channels=80,
out_channels=4,
proj_kernel=7,
base_channels=384,
upsample_factors=(2, 8, 2, 2),
res_kernel=3,
num_res_blocks=3):
super(MultibandMelganGenerator,
self).__init__(in_channels=in_channels,
out_channels=out_channels,
proj_kernel=proj_kernel,
base_channels=base_channels,
upsample_factors=upsample_factors,
res_kernel=res_kernel,
num_res_blocks=num_res_blocks)
self.pqmf_layer = PQMF(N=4, taps=62, cutoff=0.15, beta=9.0)
def pqmf_analysis(self, x):
return self.pqmf_layer.analysis(x)
def pqmf_synthesis(self, x):
return self.pqmf_layer.synthesis(x)
def inference(self, cond_features):
cond_features = cond_features.to(self.layers[1].weight.device)
cond_features = torch.nn.functional.pad(
cond_features,
(self.inference_padding, self.inference_padding),
'replicate')
return self.pqmf.synthesis(self.layers(cond_features))

View File

@ -0,0 +1,225 @@
import numpy as np
from torch import nn
class GBlock(nn.Module):
def __init__(self, in_channels, cond_channels, downsample_factor):
super(GBlock, self).__init__()
self.in_channels = in_channels
self.cond_channels = cond_channels
self.downsample_factor = downsample_factor
self.start = nn.Sequential(
nn.AvgPool1d(downsample_factor, stride=downsample_factor),
nn.ReLU(),
nn.Conv1d(in_channels, in_channels * 2, kernel_size=3, padding=1))
self.lc_conv1d = nn.Conv1d(cond_channels,
in_channels * 2,
kernel_size=1)
self.end = nn.Sequential(
nn.ReLU(),
nn.Conv1d(in_channels * 2,
in_channels * 2,
kernel_size=3,
dilation=2,
padding=2))
self.residual = nn.Sequential(
nn.Conv1d(in_channels, in_channels * 2, kernel_size=1),
nn.AvgPool1d(downsample_factor, stride=downsample_factor))
def forward(self, inputs, conditions):
outputs = self.start(inputs) + self.lc_conv1d(conditions)
outputs = self.end(outputs)
residual_outputs = self.residual(inputs)
outputs = outputs + residual_outputs
return outputs
class DBlock(nn.Module):
def __init__(self, in_channels, out_channels, downsample_factor):
super(DBlock, self).__init__()
self.in_channels = in_channels
self.downsample_factor = downsample_factor
self.out_channels = out_channels
self.donwsample_layer = nn.AvgPool1d(downsample_factor,
stride=downsample_factor)
self.layers = nn.Sequential(
nn.ReLU(),
nn.Conv1d(in_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv1d(out_channels,
out_channels,
kernel_size=3,
dilation=2,
padding=2))
self.residual = nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size=1), )
def forward(self, inputs):
if self.downsample_factor > 1:
outputs = self.layers(self.donwsample_layer(inputs))\
+ self.donwsample_layer(self.residual(inputs))
else:
outputs = self.layers(inputs) + self.residual(inputs)
return outputs
class ConditionalDiscriminator(nn.Module):
def __init__(self,
in_channels,
cond_channels,
downsample_factors=(2, 2, 2),
out_channels=(128, 256)):
super(ConditionalDiscriminator, self).__init__()
assert len(downsample_factors) == len(out_channels) + 1
self.in_channels = in_channels
self.cond_channels = cond_channels
self.downsample_factors = downsample_factors
self.out_channels = out_channels
self.pre_cond_layers = nn.ModuleList()
self.post_cond_layers = nn.ModuleList()
# layers before condition features
self.pre_cond_layers += [DBlock(in_channels, 64, 1)]
in_channels = 64
for (i, channel) in enumerate(out_channels):
self.pre_cond_layers.append(
DBlock(in_channels, channel, downsample_factors[i]))
in_channels = channel
# condition block
self.cond_block = GBlock(in_channels, cond_channels,
downsample_factors[-1])
# layers after condition block
self.post_cond_layers += [
DBlock(in_channels * 2, in_channels * 2, 1),
DBlock(in_channels * 2, in_channels * 2, 1),
nn.AdaptiveAvgPool1d(1),
nn.Conv1d(in_channels * 2, 1, kernel_size=1),
]
def forward(self, inputs, conditions):
batch_size = inputs.size()[0]
outputs = inputs.view(batch_size, self.in_channels, -1)
for layer in self.pre_cond_layers:
outputs = layer(outputs)
outputs = self.cond_block(outputs, conditions)
for layer in self.post_cond_layers:
outputs = layer(outputs)
return outputs
class UnconditionalDiscriminator(nn.Module):
def __init__(self,
in_channels,
base_channels=64,
downsample_factors=(8, 4),
out_channels=(128, 256)):
super(UnconditionalDiscriminator, self).__init__()
self.downsample_factors = downsample_factors
self.in_channels = in_channels
self.downsample_factors = downsample_factors
self.out_channels = out_channels
self.layers = nn.ModuleList()
self.layers += [DBlock(self.in_channels, base_channels, 1)]
in_channels = base_channels
for (i, factor) in enumerate(downsample_factors):
self.layers.append(DBlock(in_channels, out_channels[i], factor))
in_channels *= 2
self.layers += [
DBlock(in_channels, in_channels, 1),
DBlock(in_channels, in_channels, 1),
nn.AdaptiveAvgPool1d(1),
nn.Conv1d(in_channels, 1, kernel_size=1),
]
def forward(self, inputs):
batch_size = inputs.size()[0]
outputs = inputs.view(batch_size, self.in_channels, -1)
for layer in self.layers:
outputs = layer(outputs)
return outputs
class RandomWindowDiscriminator(nn.Module):
"""Random Window Discriminator as described in
http://arxiv.org/abs/1909.11646"""
def __init__(self,
cond_channels,
hop_length,
uncond_disc_donwsample_factors=(8, 4),
cond_disc_downsample_factors=((8, 4, 2, 2, 2), (8, 4, 2, 2),
(8, 4, 2), (8, 4), (4, 2, 2)),
cond_disc_out_channels=((128, 128, 256, 256), (128, 256, 256),
(128, 256), (256, ), (128, 256)),
window_sizes=(512, 1024, 2048, 4096, 8192)):
super(RandomWindowDiscriminator, self).__init__()
self.cond_channels = cond_channels
self.window_sizes = window_sizes
self.hop_length = hop_length
self.base_window_size = self.hop_length * 2
self.ks = [ws // self.base_window_size for ws in window_sizes]
# check arguments
assert len(cond_disc_downsample_factors) == len(
cond_disc_out_channels) == len(window_sizes)
for ws in window_sizes:
assert ws % hop_length == 0
for idx, cf in enumerate(cond_disc_downsample_factors):
assert np.prod(cf) == hop_length // self.ks[idx]
# define layers
self.unconditional_discriminators = nn.ModuleList([])
for k in self.ks:
layer = UnconditionalDiscriminator(
in_channels=k,
base_channels=64,
downsample_factors=uncond_disc_donwsample_factors)
self.unconditional_discriminators.append(layer)
self.conditional_discriminators = nn.ModuleList([])
for idx, k in enumerate(self.ks):
layer = ConditionalDiscriminator(
in_channels=k,
cond_channels=cond_channels,
downsample_factors=cond_disc_downsample_factors[idx],
out_channels=cond_disc_out_channels[idx])
self.conditional_discriminators.append(layer)
def forward(self, x, c):
scores = []
feats = []
# unconditional pass
for (window_size, layer) in zip(self.window_sizes,
self.unconditional_discriminators):
index = np.random.randint(x.shape[-1] - window_size)
score = layer(x[:, :, index:index + window_size])
scores.append(score)
# conditional pass
for (window_size, layer) in zip(self.window_sizes,
self.conditional_discriminators):
frame_size = window_size // self.hop_length
lc_index = np.random.randint(c.shape[-1] - frame_size)
sample_index = lc_index * self.hop_length
x_sub = x[:, :,
sample_index:(lc_index + frame_size) * self.hop_length]
c_sub = c[:, :, lc_index:lc_index + frame_size]
score = layer(x_sub, c_sub)
scores.append(score)
return scores, feats

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,6 @@
{
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 4
}

BIN
vocoder/pqmf_output.wav Normal file

Binary file not shown.

View File

@ -0,0 +1 @@

View File

@ -0,0 +1,24 @@
{
"audio":{
"num_mels": 80, // size of the mel spec frame.
"num_freq": 513, // number of stft frequency levels. Size of the linear spectogram frame.
"sample_rate": 22050, // wav sample-rate. If different than the original data, it is resampled.
"frame_length_ms": null, // stft window length in ms.
"frame_shift_ms": null, // stft window hop-lengh in ms.
"hop_length": 256,
"win_length": 1024,
"preemphasis": 0.97, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
"min_level_db": -100, // normalization range
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
"power": 1.5, // value to sharpen wav signals after GL algorithm.
"griffin_lim_iters": 30,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
"signal_norm": true, // normalize the spec values in range [0, 1]
"symmetric_norm": true, // move normalization to range [-1, 1]
"clip_norm": true, // clip normalized values into the range.
"max_norm": 4, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
"mel_fmin": 0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
"mel_fmax": 8000, // maximum freq level for mel-spec. Tune for dataset!!
"do_trim_silence": false
}
}

View File

@ -0,0 +1,95 @@
import os
import numpy as np
from torch.utils.data import DataLoader
from TTS.vocoder.datasets.gan_dataset import GANDataset
from TTS.vocoder.datasets.preprocess import load_wav_data
from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_config
file_path = os.path.dirname(os.path.realpath(__file__))
OUTPATH = os.path.join(file_path, "../../tests/outputs/loader_tests/")
os.makedirs(OUTPATH, exist_ok=True)
C = load_config(os.path.join(file_path, 'test_config.json'))
test_data_path = os.path.join(file_path, "../../tests/data/ljspeech/")
ok_ljspeech = os.path.exists(test_data_path)
def gan_dataset_case(batch_size, seq_len, hop_len, conv_pad, return_segments, use_noise_augment, use_cache, num_workers):
''' run dataloader with given parameters and check conditions '''
ap = AudioProcessor(**C.audio)
eval_items, train_items = load_wav_data(test_data_path, 10)
dataset = GANDataset(ap,
train_items,
seq_len=seq_len,
hop_len=hop_len,
pad_short=2000,
conv_pad=conv_pad,
return_segments=return_segments,
use_noise_augment=use_noise_augment,
use_cache=use_cache)
loader = DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=True,
drop_last=True)
max_iter = 10
count_iter = 0
# return random segments or return the whole audio
if return_segments:
for item1, item2 in loader:
feat1, wav1 = item1
feat2, wav2 = item2
expected_feat_shape = (batch_size, ap.num_mels, seq_len // hop_len + conv_pad * 2)
# check shapes
assert np.all(feat1.shape == expected_feat_shape), f" [!] {feat1.shape} vs {expected_feat_shape}"
assert (feat1.shape[2] - conv_pad * 2) * hop_len == wav1.shape[2]
# check feature vs audio match
if not use_noise_augment:
for idx in range(batch_size):
audio = wav1[idx].squeeze()
feat = feat1[idx]
mel = ap.melspectrogram(audio)
# the first 2 and the last frame is skipped due to the padding
# applied in spec. computation.
assert (feat - mel[:, :feat1.shape[-1]])[:, 2:-1].sum() == 0, f' [!] {(feat - mel[:, :feat1.shape[-1]])[:, 2:-1].sum()}'
count_iter += 1
# if count_iter == max_iter:
# break
else:
for item in loader:
feat, wav = item
expected_feat_shape = (batch_size, ap.num_mels, (wav.shape[-1] // hop_len) + (conv_pad * 2))
assert np.all(feat.shape == expected_feat_shape), f" [!] {feat.shape} vs {expected_feat_shape}"
assert (feat.shape[2] - conv_pad * 2) * hop_len == wav.shape[2]
count_iter += 1
if count_iter == max_iter:
break
def test_parametrized_gan_dataset():
''' test dataloader with different parameters '''
params = [
[32, C.audio['hop_length'] * 10, C.audio['hop_length'], 0, True, False, True, 0],
[32, C.audio['hop_length'] * 10, C.audio['hop_length'], 0, True, False, True, 4],
[1, C.audio['hop_length'] * 10, C.audio['hop_length'], 0, True, True, True, 0],
[1, C.audio['hop_length'], C.audio['hop_length'], 0, True, True, True, 0],
[1, C.audio['hop_length'] * 10, C.audio['hop_length'], 2, True, True, True, 0],
[1, C.audio['hop_length'] * 10, C.audio['hop_length'], 0, False, True, True, 0],
[1, C.audio['hop_length'] * 10, C.audio['hop_length'], 0, True, False, True, 0],
[1, C.audio['hop_length'] * 10, C.audio['hop_length'], 0, True, True, False, 0],
[1, C.audio['hop_length'] * 10, C.audio['hop_length'], 0, False, False, False, 0],
]
for param in params:
print(param)
gan_dataset_case(*param)

View File

@ -0,0 +1,62 @@
import os
import unittest
import torch
from TTS.vocoder.layers.losses import TorchSTFT, STFTLoss, MultiScaleSTFTLoss
from TTS.tests import get_tests_path, get_tests_input_path, get_tests_output_path
from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_config
TESTS_PATH = get_tests_path()
OUT_PATH = os.path.join(get_tests_output_path(), "audio_tests")
os.makedirs(OUT_PATH, exist_ok=True)
WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav")
file_path = os.path.dirname(os.path.realpath(__file__))
C = load_config(os.path.join(file_path, 'test_config.json'))
ap = AudioProcessor(**C.audio)
def test_torch_stft():
torch_stft = TorchSTFT(ap.n_fft, ap.hop_length, ap.win_length)
# librosa stft
wav = ap.load_wav(WAV_FILE)
M_librosa = abs(ap._stft(wav))
# torch stft
wav = torch.from_numpy(wav[None, :]).float()
M_torch = torch_stft(wav)
# check the difference b/w librosa and torch outputs
assert (M_librosa - M_torch[0].data.numpy()).max() < 1e-5
def test_stft_loss():
stft_loss = STFTLoss(ap.n_fft, ap.hop_length, ap.win_length)
wav = ap.load_wav(WAV_FILE)
wav = torch.from_numpy(wav[None, :]).float()
loss_m, loss_sc = stft_loss(wav, wav)
assert loss_m + loss_sc == 0
loss_m, loss_sc = stft_loss(wav, torch.rand_like(wav))
assert loss_sc < 1.0
assert loss_m + loss_sc > 0
def test_multiscale_stft_loss():
stft_loss = MultiScaleSTFTLoss([ap.n_fft//2, ap.n_fft, ap.n_fft*2],
[ap.hop_length // 2, ap.hop_length, ap.hop_length * 2],
[ap.win_length // 2, ap.win_length, ap.win_length * 2])
wav = ap.load_wav(WAV_FILE)
wav = torch.from_numpy(wav[None, :]).float()
loss_m, loss_sc = stft_loss(wav, wav)
assert loss_m + loss_sc == 0
loss_m, loss_sc = stft_loss(wav, torch.rand_like(wav))
assert loss_sc < 1.0
assert loss_m + loss_sc > 0

View File

@ -0,0 +1,26 @@
import numpy as np
import torch
from TTS.vocoder.models.melgan_discriminator import MelganDiscriminator
from TTS.vocoder.models.melgan_multiscale_discriminator import MelganMultiscaleDiscriminator
def test_melgan_discriminator():
model = MelganDiscriminator()
print(model)
dummy_input = torch.rand((4, 1, 256 * 10))
output, _ = model(dummy_input)
assert np.all(output.shape == (4, 1, 10))
def test_melgan_multi_scale_discriminator():
model = MelganMultiscaleDiscriminator()
print(model)
dummy_input = torch.rand((4, 1, 256 * 16))
scores, feats = model(dummy_input)
assert len(scores) == 3
assert len(scores) == len(feats)
assert np.all(scores[0].shape == (4, 1, 16))
assert np.all(feats[0][0].shape == (4, 16, 4096))
assert np.all(feats[0][1].shape == (4, 64, 1024))
assert np.all(feats[0][2].shape == (4, 256, 256))

View File

@ -0,0 +1,15 @@
import numpy as np
import unittest
import torch
from TTS.vocoder.models.melgan_generator import MelganGenerator
def test_melgan_generator():
model = MelganGenerator()
print(model)
dummy_input = torch.rand((4, 80, 64))
output = model(dummy_input)
assert np.all(output.shape == (4, 1, 64 * 256))
output = model.inference(dummy_input)
assert np.all(output.shape == (4, 1, (64 + 4) * 256))

View File

@ -0,0 +1,33 @@
import os
import torch
import unittest
import numpy as np
import soundfile as sf
from librosa.core import load
from TTS.tests import get_tests_path, get_tests_input_path, get_tests_output_path
from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_config
from TTS.vocoder.layers.pqmf import PQMF
from TTS.vocoder.layers.pqmf2 import PQMF as PQMF2
TESTS_PATH = get_tests_path()
WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav")
def test_pqmf():
w, sr = load(WAV_FILE)
layer = PQMF(N=4, taps=62, cutoff=0.15, beta=9.0)
w, sr = load(WAV_FILE)
w2 = torch.from_numpy(w[None, None, :])
b2 = layer.analysis(w2)
w2_ = layer.synthesis(b2)
print(w2_.max())
print(w2_.min())
print(w2_.mean())
sf.write('pqmf_output.wav', w2_.flatten().detach(), sr)

21
vocoder/tests/test_rwd.py Normal file
View File

@ -0,0 +1,21 @@
import torch
import numpy as np
from TTS.vocoder.models.random_window_discriminator import RandomWindowDiscriminator
def test_rwd():
layer = RandomWindowDiscriminator(cond_channels=80,
window_sizes=(512, 1024, 2048, 4096,
8192),
cond_disc_downsample_factors=[
(8, 4, 2, 2, 2), (8, 4, 2, 2),
(8, 4, 2), (8, 4), (4, 2, 2)
],
hop_length=256)
x = torch.rand([4, 1, 22050])
c = torch.rand([4, 80, 22050 // 256])
scores, _ = layer(x, c)
assert len(scores) == 10
assert np.all(scores[0].shape == (4, 1, 1))

585
vocoder/train.py Normal file
View File

@ -0,0 +1,585 @@
import argparse
import glob
import os
import sys
import time
import traceback
import torch
from torch.utils.data import DataLoader
from inspect import signature
from TTS.utils.audio import AudioProcessor
from TTS.utils.generic_utils import (KeepAverage, count_parameters,
create_experiment_folder, get_git_branch,
remove_experiment_folder, set_init_dict)
from TTS.utils.io import copy_config_file, load_config
from TTS.utils.radam import RAdam
from TTS.utils.tensorboard_logger import TensorboardLogger
from TTS.utils.training import NoamLR
from TTS.vocoder.datasets.gan_dataset import GANDataset
from TTS.vocoder.datasets.preprocess import load_wav_data
# from distribute import (DistributedSampler, apply_gradient_allreduce,
# init_distributed, reduce_tensor)
from TTS.vocoder.layers.losses import DiscriminatorLoss, GeneratorLoss
from TTS.vocoder.utils.io import save_checkpoint, save_best_model
from TTS.vocoder.utils.console_logger import ConsoleLogger
from TTS.vocoder.utils.generic_utils import (check_config, plot_results,
setup_discriminator,
setup_generator)
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.manual_seed(54321)
use_cuda = torch.cuda.is_available()
num_gpus = torch.cuda.device_count()
print(" > Using CUDA: ", use_cuda)
print(" > Number of GPUs: ", num_gpus)
def setup_loader(ap, is_val=False, verbose=False):
if is_val and not c.run_eval:
loader = None
else:
dataset = GANDataset(ap=ap,
items=eval_data if is_val else train_data,
seq_len=c.seq_len,
hop_len=ap.hop_length,
pad_short=c.pad_short,
conv_pad=c.conv_pad,
is_training=not is_val,
return_segments=False if is_val else True,
use_noise_augment=c.use_noise_augment,
use_cache=c.use_cache,
verbose=verbose)
# sampler = DistributedSampler(dataset) if num_gpus > 1 else None
loader = DataLoader(dataset,
batch_size=1 if is_val else c.batch_size,
shuffle=False,
drop_last=False,
sampler=None,
num_workers=c.num_val_loader_workers
if is_val else c.num_loader_workers,
pin_memory=False)
return loader
def format_data(data):
if isinstance(data[0], list):
# setup input data
c_G, x_G = data[0]
c_D, x_D = data[1]
# dispatch data to GPU
if use_cuda:
c_G = c_G.cuda(non_blocking=True)
x_G = x_G.cuda(non_blocking=True)
c_D = c_D.cuda(non_blocking=True)
x_D = x_D.cuda(non_blocking=True)
return c_G, x_G, c_D, x_D
# return a whole audio segment
c, x = data
if use_cuda:
c = c.cuda(non_blocking=True)
x = x.cuda(non_blocking=True)
return c, x
def train(model_G, criterion_G, optimizer_G, model_D, criterion_D, optimizer_D,
scheduler_G, scheduler_D, ap, global_step, epoch):
data_loader = setup_loader(ap, is_val=False, verbose=(epoch == 0))
model_G.train()
model_D.train()
epoch_time = 0
keep_avg = KeepAverage()
if use_cuda:
batch_n_iter = int(
len(data_loader.dataset) / (c.batch_size * num_gpus))
else:
batch_n_iter = int(len(data_loader.dataset) / c.batch_size)
end_time = time.time()
c_logger.print_train_start()
for num_iter, data in enumerate(data_loader):
start_time = time.time()
# format data
c_G, y_G, c_D, y_D = format_data(data)
loader_time = time.time() - end_time
global_step += 1
# get current learning rates
current_lr_G = list(optimizer_G.param_groups)[0]['lr']
current_lr_D = list(optimizer_D.param_groups)[0]['lr']
##############################
# GENERATOR
##############################
# generator pass
optimizer_G.zero_grad()
y_hat = model_G(c_G)
in_real_D = y_hat
in_fake_D = y_G
# PQMF formatting
if y_hat.shape[1] > 1:
in_real_D = y_G
in_fake_D = model_G.pqmf_synthesis(y_hat)
y_G = model_G.pqmf_analysis(y_G)
y_hat = y_hat.view(-1, 1, y_hat.shape[2])
y_G = y_G.view(-1, 1, y_G.shape[2])
if global_step > c.steps_to_start_discriminator:
# run D with or without cond. features
if len(signature(model_D).parameters) == 2:
D_out_fake = model_D(in_fake_D, c_G)
else:
D_out_fake = model_D(in_fake_D)
D_out_real = None
if c.use_feat_match_loss:
with torch.no_grad():
D_out_real = model_D(in_real_D)
# format D outputs
if isinstance(D_out_fake, tuple):
scores_fake, feats_fake = D_out_fake
if D_out_real is None:
scores_real, feats_real = None, None
else:
scores_real, feats_real = D_out_real
else:
scores_fake = D_out_fake
scores_real = D_out_real
else:
scores_fake, feats_fake, feats_real = None, None, None
# compute losses
loss_G_dict = criterion_G(y_hat, y_G, scores_fake, feats_fake,
feats_real)
loss_G = loss_G_dict['G_loss']
# optimizer generator
loss_G.backward()
if c.gen_clip_grad > 0:
torch.nn.utils.clip_grad_norm_(model_G.parameters(),
c.gen_clip_grad)
optimizer_G.step()
# setup lr
if c.noam_schedule:
scheduler_G.step()
loss_dict = dict()
for key, value in loss_G_dict.items():
loss_dict[key] = value.item()
##############################
# DISCRIMINATOR
##############################
if global_step > c.steps_to_start_discriminator:
# discriminator pass
with torch.no_grad():
y_hat = model_G(c_D)
# PQMF formatting
if y_hat.shape[1] > 1:
y_hat = model_G.pqmf_synthesis(y_hat)
optimizer_D.zero_grad()
# run D with or without cond. features
if len(signature(model_D).parameters) == 2:
D_out_fake = model_D(y_hat.detach(), c_D)
D_out_real = model_D(y_D, c_D)
else:
D_out_fake = model_D(y_hat.detach())
D_out_real = model_D(y_D)
# format D outputs
if isinstance(D_out_fake, tuple):
scores_fake, feats_fake = D_out_fake
if D_out_real is None:
scores_real, feats_real = None, None
else:
scores_real, feats_real = D_out_real
else:
scores_fake = D_out_fake
scores_real = D_out_real
# compute losses
loss_D_dict = criterion_D(scores_fake, scores_real)
loss_D = loss_D_dict['D_loss']
# optimizer discriminator
loss_D.backward()
if c.disc_clip_grad > 0:
torch.nn.utils.clip_grad_norm_(model_D.parameters(),
c.disc_clip_grad)
optimizer_D.step()
# setup lr
if c.noam_schedule:
scheduler_D.step()
for key, value in loss_D_dict.items():
loss_dict[key] = value.item()
step_time = time.time() - start_time
epoch_time += step_time
# update avg stats
update_train_values = dict()
for key, value in loss_dict.items():
update_train_values['avg_' + key] = value
update_train_values['avg_loader_time'] = loader_time
update_train_values['avg_step_time'] = step_time
keep_avg.update_values(update_train_values)
# print training stats
if global_step % c.print_step == 0:
c_logger.print_train_step(batch_n_iter, num_iter, global_step,
step_time, loader_time, current_lr_G,
loss_dict, keep_avg.avg_values)
# plot step stats
if global_step % 10 == 0:
iter_stats = {
"lr_G": current_lr_G,
"lr_D": current_lr_D,
"step_time": step_time
}
iter_stats.update(loss_dict)
tb_logger.tb_train_iter_stats(global_step, iter_stats)
# save checkpoint
if global_step % c.save_step == 0:
if c.checkpoint:
# save model
save_checkpoint(model_G,
optimizer_G,
model_D,
optimizer_D,
global_step,
epoch,
OUT_PATH,
model_losses=loss_dict)
# compute spectrograms
figures = plot_results(in_fake_D, in_real_D, ap, global_step,
'train')
tb_logger.tb_train_figures(global_step, figures)
# Sample audio
sample_voice = in_fake_D[0].squeeze(0).detach().cpu().numpy()
tb_logger.tb_train_audios(global_step,
{'train/audio': sample_voice},
c.audio["sample_rate"])
end_time = time.time()
# print epoch stats
c_logger.print_train_epoch_end(global_step, epoch, epoch_time, keep_avg)
# Plot Training Epoch Stats
epoch_stats = {"epoch_time": epoch_time}
epoch_stats.update(keep_avg.avg_values)
tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
# TODO: plot model stats
# if c.tb_model_param_stats:
# tb_logger.tb_model_weights(model, global_step)
return keep_avg.avg_values, global_step
@torch.no_grad()
def evaluate(model_G, criterion_G, model_D, ap, global_step, epoch):
data_loader = setup_loader(ap, is_val=True, verbose=(epoch == 0))
model_G.eval()
model_D.eval()
epoch_time = 0
keep_avg = KeepAverage()
end_time = time.time()
c_logger.print_eval_start()
for num_iter, data in enumerate(data_loader):
start_time = time.time()
# format data
c_G, y_G = format_data(data)
loader_time = time.time() - end_time
global_step += 1
##############################
# GENERATOR
##############################
# generator pass
y_hat = model_G(c_G)
in_real_D = y_hat
in_fake_D = y_G
# PQMF formatting
if y_hat.shape[1] > 1:
in_real_D = y_G
in_fake_D = model_G.pqmf_synthesis(y_hat)
y_G = model_G.pqmf_analysis(y_G)
y_hat = y_hat.view(-1, 1, y_hat.shape[2])
y_G = y_G.view(-1, 1, y_G.shape[2])
D_out_fake = model_D(in_fake_D)
D_out_real = None
if c.use_feat_match_loss:
with torch.no_grad():
D_out_real = model_D(in_real_D)
# format D outputs
if isinstance(D_out_fake, tuple):
scores_fake, feats_fake = D_out_fake
if D_out_real is None:
feats_real = None
else:
_, feats_real = D_out_real
else:
scores_fake = D_out_fake
# compute losses
loss_G_dict = criterion_G(y_hat, y_G, scores_fake, feats_fake,
feats_real)
loss_dict = dict()
for key, value in loss_G_dict.items():
loss_dict[key] = value.item()
step_time = time.time() - start_time
epoch_time += step_time
# update avg stats
update_eval_values = dict()
for key, value in loss_G_dict.items():
update_eval_values['avg_' + key] = value.item()
update_eval_values['avg_loader_time'] = loader_time
update_eval_values['avg_step_time'] = step_time
keep_avg.update_values(update_eval_values)
# print eval stats
if c.print_eval:
c_logger.print_eval_step(num_iter, loss_dict, keep_avg.avg_values)
# compute spectrograms
figures = plot_results(y_hat, y_G, ap, global_step, 'eval')
tb_logger.tb_eval_figures(global_step, figures)
# Sample audio
sample_voice = y_hat[0].squeeze(0).detach().cpu().numpy()
tb_logger.tb_eval_audios(global_step, {'eval/audio': sample_voice},
c.audio["sample_rate"])
# synthesize a full voice
data_loader.return_segments = False
return keep_avg.avg_values
# FIXME: move args definition/parsing inside of main?
def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=global-variable-undefined
global train_data, eval_data
eval_data, train_data = load_wav_data(c.data_path, c.eval_split_size)
# setup audio processor
ap = AudioProcessor(**c.audio)
# DISTRUBUTED
# if num_gpus > 1:
# init_distributed(args.rank, num_gpus, args.group_id,
# c.distributed["backend"], c.distributed["url"])
# setup models
model_gen = setup_generator(c)
model_disc = setup_discriminator(c)
# setup optimizers
optimizer_gen = RAdam(model_gen.parameters(), lr=c.lr_gen, weight_decay=0)
optimizer_disc = RAdam(model_disc.parameters(),
lr=c.lr_disc,
weight_decay=0)
# setup criterion
criterion_gen = GeneratorLoss(c)
criterion_disc = DiscriminatorLoss(c)
if args.restore_path:
checkpoint = torch.load(args.restore_path, map_location='cpu')
try:
model_gen.load_state_dict(checkpoint['model'])
optimizer_gen.load_state_dict(checkpoint['optimizer'])
model_disc.load_state_dict(checkpoint['model_disc'])
optimizer_disc.load_state_dict(checkpoint['optimizer_disc'])
except:
print(" > Partial model initialization.")
model_dict = model_gen.state_dict()
model_dict = set_init_dict(model_dict, checkpoint['model'], c)
model_gen.load_state_dict(model_dict)
model_dict = model_disc.state_dict()
model_dict = set_init_dict(model_dict, checkpoint['model_disc'], c)
model_disc.load_state_dict(model_dict)
del model_dict
# reset lr if not countinuining training.
for group in optimizer_gen.param_groups:
group['lr'] = c.lr_gen
for group in optimizer_disc.param_groups:
group['lr'] = c.lr_disc
print(" > Model restored from step %d" % checkpoint['step'],
flush=True)
args.restore_step = checkpoint['step']
else:
args.restore_step = 0
if use_cuda:
model_gen.cuda()
criterion_gen.cuda()
model_disc.cuda()
criterion_disc.cuda()
# DISTRUBUTED
# if num_gpus > 1:
# model = apply_gradient_allreduce(model)
if c.noam_schedule:
scheduler_gen = NoamLR(optimizer_gen,
warmup_steps=c.warmup_steps_gen,
last_epoch=args.restore_step - 1)
scheduler_disc = NoamLR(optimizer_disc,
warmup_steps=c.warmup_steps_gen,
last_epoch=args.restore_step - 1)
else:
scheduler_gen, scheduler_disc = None, None
num_params = count_parameters(model_gen)
print(" > Generator has {} parameters".format(num_params), flush=True)
num_params = count_parameters(model_disc)
print(" > Discriminator has {} parameters".format(num_params), flush=True)
if 'best_loss' not in locals():
best_loss = float('inf')
global_step = args.restore_step
for epoch in range(0, c.epochs):
c_logger.print_epoch_start(epoch, c.epochs)
_, global_step = train(model_gen, criterion_gen, optimizer_gen,
model_disc, criterion_disc, optimizer_disc,
scheduler_gen, scheduler_disc, ap, global_step,
epoch)
eval_avg_loss_dict = evaluate(model_gen, criterion_gen, model_disc, ap,
global_step, epoch)
c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
target_loss = eval_avg_loss_dict[c.target_loss]
best_loss = save_best_model(target_loss,
best_loss,
model_gen,
optimizer_gen,
model_disc,
optimizer_disc,
global_step,
epoch,
OUT_PATH,
model_losses=eval_avg_loss_dict)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--continue_path',
type=str,
help=
'Training output folder to continue training. Use to continue a training. If it is used, "config_path" is ignored.',
default='',
required='--config_path' not in sys.argv)
parser.add_argument(
'--restore_path',
type=str,
help='Model file to be restored. Use to finetune a model.',
default='')
parser.add_argument('--config_path',
type=str,
help='Path to config file for training.',
required='--continue_path' not in sys.argv)
parser.add_argument('--debug',
type=bool,
default=False,
help='Do not verify commit integrity to run training.')
# DISTRUBUTED
parser.add_argument(
'--rank',
type=int,
default=0,
help='DISTRIBUTED: process rank for distributed training.')
parser.add_argument('--group_id',
type=str,
default="",
help='DISTRIBUTED: process group id.')
args = parser.parse_args()
if args.continue_path != '':
args.output_path = args.continue_path
args.config_path = os.path.join(args.continue_path, 'config.json')
list_of_files = glob.glob(
args.continue_path +
"/*.pth.tar") # * means all if need specific format then *.csv
latest_model_file = max(list_of_files, key=os.path.getctime)
args.restore_path = latest_model_file
print(f" > Training continues for {args.restore_path}")
# setup output paths and read configs
c = load_config(args.config_path)
check_config(c)
_ = os.path.dirname(os.path.realpath(__file__))
OUT_PATH = args.continue_path
if args.continue_path == '':
OUT_PATH = create_experiment_folder(c.output_path, c.run_name,
args.debug)
AUDIO_PATH = os.path.join(OUT_PATH, 'test_audios')
c_logger = ConsoleLogger()
if args.rank == 0:
os.makedirs(AUDIO_PATH, exist_ok=True)
new_fields = {}
if args.restore_path:
new_fields["restore_path"] = args.restore_path
new_fields["github_branch"] = get_git_branch()
copy_config_file(args.config_path,
os.path.join(OUT_PATH, 'config.json'), new_fields)
os.chmod(AUDIO_PATH, 0o775)
os.chmod(OUT_PATH, 0o775)
LOG_DIR = OUT_PATH
tb_logger = TensorboardLogger(LOG_DIR, model_name='VOCODER')
# write model desc to tensorboard
tb_logger.tb_add_text('model-description', c['run_description'], 0)
try:
main(args)
except KeyboardInterrupt:
remove_experiment_folder(OUT_PATH)
try:
sys.exit(0)
except SystemExit:
os._exit(0) # pylint: disable=protected-access
except Exception: # pylint: disable=broad-except
remove_experiment_folder(OUT_PATH)
traceback.print_exc()
sys.exit(1)

View File

View File

@ -0,0 +1,97 @@
import datetime
from TTS.utils.io import AttrDict
tcolors = AttrDict({
'OKBLUE': '\033[94m',
'HEADER': '\033[95m',
'OKGREEN': '\033[92m',
'WARNING': '\033[93m',
'FAIL': '\033[91m',
'ENDC': '\033[0m',
'BOLD': '\033[1m',
'UNDERLINE': '\033[4m'
})
class ConsoleLogger():
def __init__(self):
# TODO: color code for value changes
# use these to compare values between iterations
self.old_train_loss_dict = None
self.old_epoch_loss_dict = None
self.old_eval_loss_dict = None
# pylint: disable=no-self-use
def get_time(self):
now = datetime.datetime.now()
return now.strftime("%Y-%m-%d %H:%M:%S")
def print_epoch_start(self, epoch, max_epoch):
print("\n{}{} > EPOCH: {}/{}{}".format(tcolors.UNDERLINE, tcolors.BOLD,
epoch, max_epoch, tcolors.ENDC),
flush=True)
def print_train_start(self):
print(f"\n{tcolors.BOLD} > TRAINING ({self.get_time()}) {tcolors.ENDC}")
def print_train_step(self, batch_steps, step, global_step,
step_time, loader_time, lr,
loss_dict, avg_loss_dict):
indent = " | > "
print()
log_text = "{} --> STEP: {}/{} -- GLOBAL_STEP: {}{}\n".format(
tcolors.BOLD, step, batch_steps, global_step, tcolors.ENDC)
for key, value in loss_dict.items():
# print the avg value if given
if f'avg_{key}' in avg_loss_dict.keys():
log_text += "{}{}: {:.5f} ({:.5f})\n".format(indent, key, value, avg_loss_dict[f'avg_{key}'])
else:
log_text += "{}{}: {:.5f} \n".format(indent, key, value)
log_text += f"{indent}step_time: {step_time:.2f}\n{indent}loader_time: {loader_time:.2f}\n{indent}lr: {lr:.5f}"
print(log_text, flush=True)
# pylint: disable=unused-argument
def print_train_epoch_end(self, global_step, epoch, epoch_time,
print_dict):
indent = " | > "
log_text = f"\n{tcolors.BOLD} --> TRAIN PERFORMACE -- EPOCH TIME: {epoch} sec -- GLOBAL_STEP: {global_step}{tcolors.ENDC}\n"
for key, value in print_dict.items():
log_text += "{}{}: {:.5f}\n".format(indent, key, value)
print(log_text, flush=True)
def print_eval_start(self):
print(f"{tcolors.BOLD} > EVALUATION {tcolors.ENDC}\n")
def print_eval_step(self, step, loss_dict, avg_loss_dict):
indent = " | > "
print()
log_text = f"{tcolors.BOLD} --> STEP: {step}{tcolors.ENDC}\n"
for key, value in loss_dict.items():
# print the avg value if given
if f'avg_{key}' in avg_loss_dict.keys():
log_text += "{}{}: {:.5f} ({:.5f})\n".format(indent, key, value, avg_loss_dict[f'avg_{key}'])
else:
log_text += "{}{}: {:.5f} \n".format(indent, key, value)
print(log_text, flush=True)
def print_epoch_end(self, epoch, avg_loss_dict):
indent = " | > "
log_text = " {}--> EVAL PERFORMANCE{}\n".format(
tcolors.BOLD, tcolors.ENDC)
for key, value in avg_loss_dict.items():
# print the avg value if given
color = ''
sign = '+'
diff = 0
if self.old_eval_loss_dict is not None:
diff = value - self.old_eval_loss_dict[key]
if diff < 0:
color = tcolors.OKGREEN
sign = ''
elif diff > 0:
color = tcolors.FAIL
sing = '+'
log_text += "{}{}:{} {:.5f} {}({}{:.5f})\n".format(indent, key, color, value, tcolors.ENDC, sign, diff)
self.old_eval_loss_dict = avg_loss_dict
print(log_text, flush=True)

View File

@ -0,0 +1,102 @@
import re
import importlib
import numpy as np
from matplotlib import pyplot as plt
from TTS.utils.visual import plot_spectrogram
def plot_results(y_hat, y, ap, global_step, name_prefix):
""" Plot vocoder model results """
# select an instance from batch
y_hat = y_hat[0].squeeze(0).detach().cpu().numpy()
y = y[0].squeeze(0).detach().cpu().numpy()
spec_fake = ap.spectrogram(y_hat).T
spec_real = ap.spectrogram(y).T
spec_diff = np.abs(spec_fake - spec_real)
# plot figure and save it
fig_wave = plt.figure()
plt.subplot(2, 1, 1)
plt.plot(y)
plt.title("groundtruth speech")
plt.subplot(2, 1, 2)
plt.plot(y_hat)
plt.title(f"generated speech @ {global_step} steps")
plt.tight_layout()
plt.close()
figures = {
name_prefix + "/spectrogram/fake": plot_spectrogram(spec_fake, ap),
name_prefix + "spectrogram/real": plot_spectrogram(spec_real, ap),
name_prefix + "spectrogram/diff": plot_spectrogram(spec_diff, ap),
name_prefix + "speech_comparison": fig_wave,
}
return figures
def to_camel(text):
text = text.capitalize()
return re.sub(r'(?!^)_([a-zA-Z])', lambda m: m.group(1).upper(), text)
def setup_generator(c):
print(" > Generator Model: {}".format(c.generator_model))
MyModel = importlib.import_module('TTS.vocoder.models.' +
c.generator_model.lower())
MyModel = getattr(MyModel, to_camel(c.generator_model))
if c.generator_model in 'melgan_generator':
model = MyModel(
in_channels=c.audio['num_mels'],
out_channels=1,
proj_kernel=7,
base_channels=512,
upsample_factors=c.generator_model_params['upsample_factors'],
res_kernel=3,
num_res_blocks=c.generator_model_params['num_res_blocks'])
if c.generator_model in 'melgan_fb_generator':
pass
if c.generator_model in 'multiband_melgan_generator':
model = MyModel(
in_channels=c.audio['num_mels'],
out_channels=4,
proj_kernel=7,
base_channels=384,
upsample_factors=c.generator_model_params['upsample_factors'],
res_kernel=3,
num_res_blocks=c.generator_model_params['num_res_blocks'])
return model
def setup_discriminator(c):
print(" > Discriminator Model: {}".format(c.discriminator_model))
MyModel = importlib.import_module('TTS.vocoder.models.' +
c.discriminator_model.lower())
MyModel = getattr(MyModel, to_camel(c.discriminator_model))
if c.discriminator_model in 'random_window_discriminator':
model = MyModel(
cond_channels=c.audio['num_mels'],
hop_length=c.audio['hop_length'],
uncond_disc_donwsample_factors=c.
discriminator_model_params['uncond_disc_donwsample_factors'],
cond_disc_downsample_factors=c.
discriminator_model_params['cond_disc_downsample_factors'],
cond_disc_out_channels=c.
discriminator_model_params['cond_disc_out_channels'],
window_sizes=c.discriminator_model_params['window_sizes'])
if c.discriminator_model in 'melgan_multiscale_discriminator':
model = MyModel(
in_channels=1,
out_channels=1,
kernel_sizes=(5, 3),
base_channels=c.discriminator_model_params['base_channels'],
max_channels=c.discriminator_model_params['max_channels'],
downsample_factors=c.
discriminator_model_params['downsample_factors'])
return model
# def check_config(c):
# pass

52
vocoder/utils/io.py Normal file
View File

@ -0,0 +1,52 @@
import os
import torch
import datetime
def save_model(model, optimizer, model_disc, optimizer_disc, current_step,
epoch, output_path, **kwargs):
model_state = model.state_dict()
model_disc_state = model_disc.state_dict()
optimizer_state = optimizer.state_dict() if optimizer is not None else None
optimizer_disc_state = optimizer_disc.state_dict(
) if optimizer_disc is not None else None
state = {
'model': model_state,
'optimizer': optimizer_state,
'model_disc': model_disc_state,
'optimizer_disc': optimizer_disc_state,
'step': current_step,
'epoch': epoch,
'date': datetime.date.today().strftime("%B %d, %Y"),
}
state.update(kwargs)
torch.save(state, output_path)
def save_checkpoint(model, optimizer, model_disc, optimizer_disc, current_step,
epoch, output_folder, **kwargs):
file_name = 'checkpoint_{}.pth.tar'.format(current_step)
checkpoint_path = os.path.join(output_folder, file_name)
print(" > CHECKPOINT : {}".format(checkpoint_path))
save_model(model, optimizer, model_disc, optimizer_disc, current_step,
epoch, checkpoint_path, **kwargs)
def save_best_model(target_loss, best_loss, model, optimizer, model_disc,
optimizer_disc, current_step, epoch, output_folder,
**kwargs):
if target_loss < best_loss:
file_name = 'best_model.pth.tar'
checkpoint_path = os.path.join(output_folder, file_name)
print(" > BEST MODEL : {}".format(checkpoint_path))
save_model(model,
optimizer,
model_disc,
optimizer_disc,
current_step,
epoch,
checkpoint_path,
model_loss=target_loss,
**kwargs)
best_loss = target_loss
return best_loss