mirror of https://github.com/coqui-ai/TTS.git
add unit test for extract tts spectrograms script
This commit is contained in:
parent
bb82f4ae8b
commit
3ecd556bbe
|
@ -124,7 +124,7 @@ def format_data(data):
|
|||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def inference(model_name, model, ap, text_input, text_lengths, mel_input, mel_lengths, attn_mask=None, speaker_ids=None, speaker_embeddings=None):
|
||||
def inference(model_name, model, config, ap, text_input, text_lengths, mel_input, mel_lengths, attn_mask=None, speaker_ids=None, speaker_embeddings=None):
|
||||
if model_name == "glow_tts":
|
||||
mel_input = mel_input.permute(0, 2, 1) # B x D x T
|
||||
speaker_c = None
|
||||
|
@ -139,7 +139,7 @@ def inference(model_name, model, ap, text_input, text_lengths, mel_input, mel_le
|
|||
model_output = model_output.transpose(1, 2).detach().cpu().numpy()
|
||||
|
||||
elif "tacotron" in model_name:
|
||||
if c.bidirectional_decoder or c.double_decoder_consistency:
|
||||
if config.bidirectional_decoder or config.double_decoder_consistency:
|
||||
(
|
||||
_,
|
||||
postnet_outputs,
|
||||
|
@ -186,7 +186,7 @@ def extract_spectrograms(data_loader, model, ap, output_path, quantized_wav=Fals
|
|||
item_idx,
|
||||
) = format_data(data)
|
||||
|
||||
model_output = inference(c.model.lower(), model, ap, text_input, text_lengths, mel_input, mel_lengths, attn_mask, speaker_ids, speaker_embeddings)
|
||||
model_output = inference(c.model.lower(), model, c, ap, text_input, text_lengths, mel_input, mel_lengths, attn_mask, speaker_ids, speaker_embeddings)
|
||||
|
||||
for idx in range(text_input.shape[0]):
|
||||
wav_file_path = item_idx[idx]
|
||||
|
|
|
@ -0,0 +1,85 @@
|
|||
import os
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
|
||||
from tests import get_tests_input_path
|
||||
|
||||
from TTS.tts.models.tacotron2 import Tacotron2
|
||||
from TTS.tts.models.glow_tts import GlowTTS
|
||||
|
||||
from TTS.utils.audio import AudioProcessor
|
||||
from TTS.utils.io import load_config
|
||||
|
||||
from TTS.bin.extract_tts_spectrograms import inference
|
||||
|
||||
torch.manual_seed(1)
|
||||
use_cuda = torch.cuda.is_available()
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
c = load_config(os.path.join(get_tests_input_path(), "test_config.json"))
|
||||
# set params from tacotron inference
|
||||
c.bidirectional_decoder = False
|
||||
c.double_decoder_consistency = False
|
||||
ap = AudioProcessor(**c.audio)
|
||||
|
||||
|
||||
# pylint: disable=protected-access
|
||||
class TestExtractTTSSpectrograms(unittest.TestCase):
|
||||
@staticmethod
|
||||
def test_GlowTTS():
|
||||
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
|
||||
input_lengths = torch.randint(100, 129, (8,)).long().to(device)
|
||||
input_lengths[-1] = 128
|
||||
mel_spec = torch.rand(8, c.audio["num_mels"], 30).to(device)
|
||||
mel_lengths = torch.randint(20, 30, (8,)).long().to(device)
|
||||
|
||||
# create model
|
||||
model = GlowTTS(
|
||||
num_chars=32,
|
||||
hidden_channels_enc=48,
|
||||
hidden_channels_dec=48,
|
||||
hidden_channels_dp=32,
|
||||
out_channels=c.audio["num_mels"],
|
||||
encoder_type="rel_pos_transformer",
|
||||
encoder_params={
|
||||
"kernel_size": 3,
|
||||
"dropout_p": 0.1,
|
||||
"num_layers": 6,
|
||||
"num_heads": 2,
|
||||
"hidden_channels_ffn": 16, # 4 times the hidden_channels
|
||||
"input_length": None,
|
||||
},
|
||||
use_encoder_prenet=True,
|
||||
num_flow_blocks_dec=12,
|
||||
kernel_size_dec=5,
|
||||
dilation_rate=1,
|
||||
num_block_layers=4,
|
||||
dropout_p_dec=0.0,
|
||||
num_speakers=0,
|
||||
c_in_channels=0,
|
||||
num_splits=4,
|
||||
num_squeeze=1,
|
||||
sigmoid_scale=False,
|
||||
mean_only=False,
|
||||
).to(device)
|
||||
|
||||
model.eval()
|
||||
_ = inference('glow_tts', model, c, ap, input_dummy, input_lengths, mel_spec.permute(0, 2, 1), mel_lengths)
|
||||
print("GlowTTS extract tts spectrograms ok !")
|
||||
|
||||
@staticmethod
|
||||
def test_Tacotron():
|
||||
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
|
||||
input_lengths = torch.randint(100, 128, (8,)).long().to(device)
|
||||
input_lengths = torch.sort(input_lengths, descending=True)[0]
|
||||
mel_spec = torch.rand(8, 30, c.audio["num_mels"]).to(device)
|
||||
mel_lengths = torch.randint(20, 30, (8,)).long().to(device)
|
||||
mel_lengths[0] = 30
|
||||
|
||||
# create model
|
||||
model = Tacotron2(num_chars=24, decoder_output_dim=c.audio["num_mels"], r=c.r, num_speakers=1).to(device)
|
||||
model.eval()
|
||||
|
||||
_ = inference('tacotron2', model, c, ap, input_dummy, input_lengths, mel_spec, mel_lengths)
|
||||
print("Tacotron extract tts spectrograms ok !")
|
Loading…
Reference in New Issue