mirror of https://github.com/coqui-ai/TTS.git
86 lines
2.9 KiB
Python
86 lines
2.9 KiB
Python
import os
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
from tests import get_tests_input_path
|
|
|
|
from TTS.tts.models.tacotron2 import Tacotron2
|
|
from TTS.tts.models.glow_tts import GlowTTS
|
|
|
|
from TTS.utils.audio import AudioProcessor
|
|
from TTS.utils.io import load_config
|
|
|
|
from TTS.bin.extract_tts_spectrograms import inference
|
|
|
|
torch.manual_seed(1)
|
|
use_cuda = torch.cuda.is_available()
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
c = load_config(os.path.join(get_tests_input_path(), "test_config.json"))
|
|
# set params from tacotron inference
|
|
c.bidirectional_decoder = False
|
|
c.double_decoder_consistency = False
|
|
ap = AudioProcessor(**c.audio)
|
|
|
|
|
|
# pylint: disable=protected-access
|
|
class TestExtractTTSSpectrograms(unittest.TestCase):
|
|
@staticmethod
|
|
def test_GlowTTS():
|
|
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
|
|
input_lengths = torch.randint(100, 129, (8,)).long().to(device)
|
|
input_lengths[-1] = 128
|
|
mel_spec = torch.rand(8, c.audio["num_mels"], 30).to(device)
|
|
mel_lengths = torch.randint(20, 30, (8,)).long().to(device)
|
|
|
|
# create model
|
|
model = GlowTTS(
|
|
num_chars=32,
|
|
hidden_channels_enc=48,
|
|
hidden_channels_dec=48,
|
|
hidden_channels_dp=32,
|
|
out_channels=c.audio["num_mels"],
|
|
encoder_type="rel_pos_transformer",
|
|
encoder_params={
|
|
"kernel_size": 3,
|
|
"dropout_p": 0.1,
|
|
"num_layers": 6,
|
|
"num_heads": 2,
|
|
"hidden_channels_ffn": 16, # 4 times the hidden_channels
|
|
"input_length": None,
|
|
},
|
|
use_encoder_prenet=True,
|
|
num_flow_blocks_dec=12,
|
|
kernel_size_dec=5,
|
|
dilation_rate=1,
|
|
num_block_layers=4,
|
|
dropout_p_dec=0.0,
|
|
num_speakers=0,
|
|
c_in_channels=0,
|
|
num_splits=4,
|
|
num_squeeze=1,
|
|
sigmoid_scale=False,
|
|
mean_only=False,
|
|
).to(device)
|
|
|
|
model.eval()
|
|
_ = inference('glow_tts', model, c, ap, input_dummy, input_lengths, mel_spec.permute(0, 2, 1), mel_lengths)
|
|
print("GlowTTS extract tts spectrograms ok !")
|
|
|
|
@staticmethod
|
|
def test_Tacotron():
|
|
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
|
|
input_lengths = torch.randint(100, 128, (8,)).long().to(device)
|
|
input_lengths = torch.sort(input_lengths, descending=True)[0]
|
|
mel_spec = torch.rand(8, 30, c.audio["num_mels"]).to(device)
|
|
mel_lengths = torch.randint(20, 30, (8,)).long().to(device)
|
|
mel_lengths[0] = 30
|
|
|
|
# create model
|
|
model = Tacotron2(num_chars=24, decoder_output_dim=c.audio["num_mels"], r=c.r, num_speakers=1).to(device)
|
|
model.eval()
|
|
|
|
_ = inference('tacotron2', model, c, ap, input_dummy, input_lengths, mel_spec, mel_lengths)
|
|
print("Tacotron extract tts spectrograms ok !")
|