Update VITS

This commit is contained in:
Eren Gölge 2021-09-30 14:22:11 +00:00
parent 4f94f91305
commit 45889804c2
2 changed files with 50 additions and 22 deletions

View File

@ -217,7 +217,7 @@ class Vits(BaseTTS):
def __init__(self, config: Coqpit):
super().__init__()
super().__init__(config)
self.END2END = True
@ -576,22 +576,7 @@ class Vits(BaseTTS):
)
return outputs, loss_dict
def train_log(
self, ap: AudioProcessor, batch: Dict, outputs: List, name_prefix="train"
): # pylint: disable=no-self-use
"""Create visualizations and waveform examples.
For example, here you can plot spectrograms and generate sample sample waveforms from these spectrograms to
be projected onto Tensorboard.
Args:
ap (AudioProcessor): audio processor used at training.
batch (Dict): Model inputs used at the previous training step.
outputs (Dict): Model outputs generated at the previoud training step.
Returns:
Tuple[Dict, np.ndarray]: training plots and output waveform.
"""
def _log(self, ap, batch, outputs, name_prefix="train"):
y_hat = outputs[0]["model_outputs"]
y = outputs[0]["waveform_seg"]
figures = plot_results(y_hat, y, ap, name_prefix)
@ -609,12 +594,32 @@ class Vits(BaseTTS):
return figures, audios
def train_log(
self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int
): # pylint: disable=no-self-use
"""Create visualizations and waveform examples.
For example, here you can plot spectrograms and generate sample sample waveforms from these spectrograms to
be projected onto Tensorboard.
Args:
ap (AudioProcessor): audio processor used at training.
batch (Dict): Model inputs used at the previous training step.
outputs (Dict): Model outputs generated at the previoud training step.
Returns:
Tuple[Dict, np.ndarray]: training plots and output waveform.
"""
ap = assets["audio_processor"]
self._log(ap, batch, outputs, "train")
@torch.no_grad()
def eval_step(self, batch: dict, criterion: nn.Module, optimizer_idx: int):
return self.train_step(batch, criterion, optimizer_idx)
def eval_log(self, ap: AudioProcessor, batch: dict, outputs: dict):
return self.train_log(ap, batch, outputs, "eval")
def eval_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None:
ap = assets["audio_processor"]
return self._log(ap, batch, outputs, "eval")
@torch.no_grad()
def test_run(self, ap) -> Tuple[Dict, Dict]:

View File

@ -1,8 +1,12 @@
import os
from TTS.config.shared_configs import BaseAudioConfig
from TTS.trainer import Trainer, TrainingArgs, init_training
from TTS.trainer import Trainer, TrainingArgs
from TTS.tts.configs import BaseDatasetConfig, VitsConfig
from TTS.tts.models.vits import Vits
from TTS.utils.audio import AudioProcessor
from TTS.tts.datasets import load_tts_samples
output_path = os.path.dirname(os.path.abspath(__file__))
dataset_config = BaseDatasetConfig(
@ -24,6 +28,7 @@ audio_config = BaseAudioConfig(
signal_norm=False,
do_amp_to_db_linear=False,
)
config = VitsConfig(
audio=audio_config,
run_name="vits_ljspeech",
@ -47,6 +52,24 @@ config = VitsConfig(
output_path=output_path,
datasets=[dataset_config],
)
args, config, output_path, _, c_logger, tb_logger = init_training(TrainingArgs(), config)
trainer = Trainer(args, config, output_path, c_logger, tb_logger, cudnn_benchmark=True)
# init audio processor
ap = AudioProcessor(**config.audio.to_dict())
# load training samples
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
# init model
model = Vits(config)
# init the trainer and 🚀
trainer = Trainer(
TrainingArgs(),
config,
output_path,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
training_assets={"audio_processor": ap},
)
trainer.fit()