tune_wavegrad update

This commit is contained in:
erogol 2020-11-25 14:49:48 +01:00
parent d8c1b5b73d
commit 4b92ac0f92
2 changed files with 5 additions and 3 deletions

View File

@ -34,7 +34,7 @@ _, train_data = load_wav_data(args.data_path, 0)
train_data = train_data[:args.num_samples]
dataset = WaveGradDataset(ap=ap,
items=train_data,
seq_len=ap.hop_length * 100,
seq_len=-1,
hop_len=ap.hop_length,
pad_short=config.pad_short,
conv_pad=config.conv_pad,
@ -58,8 +58,9 @@ if args.use_cuda:
model.cuda()
# setup optimization parameters
base_values = sorted(np.random.uniform(high=10, size=args.search_depth))
exponents = 10 ** np.linspace(-6, -2, num=args.num_iter)
base_values = sorted(10 * np.random.uniform(size=args.search_depth))
print(base_values)
exponents = 10 ** np.linspace(-6, -1, num=args.num_iter)
best_error = float('inf')
best_schedule = None
total_search_iter = len(base_values)**args.num_iter

View File

@ -119,6 +119,7 @@ class Wavegrad(nn.Module):
alpha = 1 - beta
alpha_hat = np.cumprod(alpha)
noise_level = np.concatenate([[1.0], alpha_hat ** 0.5], axis=0)
noise_level = alpha_hat ** 0.5
# pylint: disable=not-callable
self.beta = torch.tensor(beta.astype(np.float32))