mirror of https://github.com/coqui-ai/TTS.git
Update GAN for Trainer_v2
This commit is contained in:
parent
a156a40b47
commit
4baecdf92a
|
@ -35,7 +35,7 @@ class GAN(BaseVocoder):
|
|||
>>> config = HifiganConfig()
|
||||
>>> model = GAN(config)
|
||||
"""
|
||||
super().__init__()
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
self.model_g = setup_generator(config)
|
||||
self.model_d = setup_discriminator(config)
|
||||
|
@ -197,18 +197,24 @@ class GAN(BaseVocoder):
|
|||
audios = {f"{name}/audio": sample_voice}
|
||||
return figures, audios
|
||||
|
||||
def train_log(self, ap: AudioProcessor, batch: Dict, outputs: Dict) -> Tuple[Dict, np.ndarray]:
|
||||
def train_log(
|
||||
self, batch: Dict, outputs: Dict, logger: "Logger", assets: Dict, steps: int # pylint: disable=unused-argument
|
||||
) -> Tuple[Dict, np.ndarray]:
|
||||
"""Call `_log()` for training."""
|
||||
return self._log("train", ap, batch, outputs)
|
||||
ap = assets["audio_processor"]
|
||||
self._log("train", ap, batch, outputs)
|
||||
|
||||
@torch.no_grad()
|
||||
def eval_step(self, batch: Dict, criterion: nn.Module, optimizer_idx: int) -> Tuple[Dict, Dict]:
|
||||
"""Call `train_step()` with `no_grad()`"""
|
||||
return self.train_step(batch, criterion, optimizer_idx)
|
||||
|
||||
def eval_log(self, ap: AudioProcessor, batch: Dict, outputs: Dict) -> Tuple[Dict, np.ndarray]:
|
||||
def eval_log(
|
||||
self, batch: Dict, outputs: Dict, logger: "Logger", assets: Dict, steps: int # pylint: disable=unused-argument
|
||||
) -> Tuple[Dict, np.ndarray]:
|
||||
"""Call `_log()` for evaluation."""
|
||||
return self._log("eval", ap, batch, outputs)
|
||||
ap = assets["audio_processor"]
|
||||
self._log("eval", ap, batch, outputs)
|
||||
|
||||
def load_checkpoint(
|
||||
self,
|
||||
|
@ -299,7 +305,7 @@ class GAN(BaseVocoder):
|
|||
def get_data_loader( # pylint: disable=no-self-use
|
||||
self,
|
||||
config: Coqpit,
|
||||
ap: AudioProcessor,
|
||||
assets: Dict,
|
||||
is_eval: True,
|
||||
data_items: List,
|
||||
verbose: bool,
|
||||
|
@ -318,6 +324,7 @@ class GAN(BaseVocoder):
|
|||
Returns:
|
||||
DataLoader: Torch dataloader.
|
||||
"""
|
||||
ap = assets["audio_processor"]
|
||||
dataset = GANDataset(
|
||||
ap=ap,
|
||||
items=data_items,
|
||||
|
|
|
@ -1,29 +1,51 @@
|
|||
import os
|
||||
|
||||
from TTS.trainer import Trainer, TrainingArgs, init_training
|
||||
from TTS.trainer import Trainer, TrainingArgs
|
||||
from TTS.utils.audio import AudioProcessor
|
||||
from TTS.vocoder.configs import HifiganConfig
|
||||
from TTS.vocoder.datasets.preprocess import load_wav_data
|
||||
from TTS.vocoder.models.gan import GAN
|
||||
|
||||
output_path = os.path.dirname(os.path.abspath(__file__))
|
||||
|
||||
config = HifiganConfig(
|
||||
batch_size=32,
|
||||
eval_batch_size=16,
|
||||
num_loader_workers=4,
|
||||
num_eval_loader_workers=4,
|
||||
run_eval=True,
|
||||
test_delay_epochs=-1,
|
||||
test_delay_epochs=5,
|
||||
epochs=1000,
|
||||
seq_len=8192,
|
||||
pad_short=2000,
|
||||
use_noise_augment=True,
|
||||
eval_split_size=10,
|
||||
print_step=25,
|
||||
print_eval=True,
|
||||
print_eval=False,
|
||||
mixed_precision=False,
|
||||
lr_gen=1e-4,
|
||||
lr_disc=1e-4,
|
||||
data_path=os.path.join(output_path, "../LJSpeech-1.1/wavs/"),
|
||||
output_path=output_path,
|
||||
)
|
||||
args, config, output_path, _, c_logger, dashboard_logger = init_training(TrainingArgs(), config)
|
||||
trainer = Trainer(args, config, output_path, c_logger, dashboard_logger)
|
||||
|
||||
# init audio processor
|
||||
ap = AudioProcessor(**config.audio.to_dict())
|
||||
|
||||
# load training samples
|
||||
eval_samples, train_samples = load_wav_data(config.data_path, config.eval_split_size)
|
||||
|
||||
# init model
|
||||
model = GAN(config)
|
||||
|
||||
# init the trainer and 🚀
|
||||
trainer = Trainer(
|
||||
TrainingArgs(),
|
||||
config,
|
||||
output_path,
|
||||
model=model,
|
||||
train_samples=train_samples,
|
||||
eval_samples=eval_samples,
|
||||
training_assets={"audio_processor": ap},
|
||||
)
|
||||
trainer.fit()
|
||||
|
|
|
@ -1,29 +1,51 @@
|
|||
import os
|
||||
|
||||
from TTS.trainer import Trainer, TrainingArgs, init_training
|
||||
from TTS.trainer import Trainer, TrainingArgs
|
||||
from TTS.utils.audio import AudioProcessor
|
||||
from TTS.vocoder.configs import MultibandMelganConfig
|
||||
from TTS.vocoder.datasets.preprocess import load_wav_data
|
||||
from TTS.vocoder.models.gan import GAN
|
||||
|
||||
output_path = os.path.dirname(os.path.abspath(__file__))
|
||||
|
||||
config = MultibandMelganConfig(
|
||||
batch_size=32,
|
||||
eval_batch_size=16,
|
||||
num_loader_workers=4,
|
||||
num_eval_loader_workers=4,
|
||||
run_eval=True,
|
||||
test_delay_epochs=-1,
|
||||
test_delay_epochs=5,
|
||||
epochs=1000,
|
||||
seq_len=8192,
|
||||
pad_short=2000,
|
||||
use_noise_augment=True,
|
||||
eval_split_size=10,
|
||||
print_step=25,
|
||||
print_eval=True,
|
||||
print_eval=False,
|
||||
mixed_precision=False,
|
||||
lr_gen=1e-4,
|
||||
lr_disc=1e-4,
|
||||
data_path=os.path.join(output_path, "../LJSpeech-1.1/wavs/"),
|
||||
output_path=output_path,
|
||||
)
|
||||
args, config, output_path, _, c_logger, dashboard_logger = init_training(TrainingArgs(), config)
|
||||
trainer = Trainer(args, config, output_path, c_logger, dashboard_logger)
|
||||
|
||||
# init audio processor
|
||||
ap = AudioProcessor(**config.audio.to_dict())
|
||||
|
||||
# load training samples
|
||||
eval_samples, train_samples = load_wav_data(config.data_path, config.eval_split_size)
|
||||
|
||||
# init model
|
||||
model = GAN(config)
|
||||
|
||||
# init the trainer and 🚀
|
||||
trainer = Trainer(
|
||||
TrainingArgs(),
|
||||
config,
|
||||
output_path,
|
||||
model=model,
|
||||
train_samples=train_samples,
|
||||
eval_samples=eval_samples,
|
||||
training_assets={"audio_processor": ap},
|
||||
)
|
||||
trainer.fit()
|
||||
|
|
|
@ -1,7 +1,10 @@
|
|||
import os
|
||||
|
||||
from TTS.trainer import Trainer, TrainingArgs, init_training
|
||||
from TTS.trainer import Trainer, TrainingArgs
|
||||
from TTS.utils.audio import AudioProcessor
|
||||
from TTS.vocoder.configs import UnivnetConfig
|
||||
from TTS.vocoder.datasets.preprocess import load_wav_data
|
||||
from TTS.vocoder.models.gan import GAN
|
||||
|
||||
output_path = os.path.dirname(os.path.abspath(__file__))
|
||||
config = UnivnetConfig(
|
||||
|
@ -24,6 +27,24 @@ config = UnivnetConfig(
|
|||
data_path=os.path.join(output_path, "../LJSpeech-1.1/wavs/"),
|
||||
output_path=output_path,
|
||||
)
|
||||
args, config, output_path, _, c_logger, dashboard_logger = init_training(TrainingArgs(), config)
|
||||
trainer = Trainer(args, config, output_path, c_logger, dashboard_logger)
|
||||
|
||||
# init audio processor
|
||||
ap = AudioProcessor(**config.audio.to_dict())
|
||||
|
||||
# load training samples
|
||||
eval_samples, train_samples = load_wav_data(config.data_path, config.eval_split_size)
|
||||
|
||||
# init model
|
||||
model = GAN(config)
|
||||
|
||||
# init the trainer and 🚀
|
||||
trainer = Trainer(
|
||||
TrainingArgs(),
|
||||
config,
|
||||
output_path,
|
||||
model=model,
|
||||
train_samples=train_samples,
|
||||
eval_samples=eval_samples,
|
||||
training_assets={"audio_processor": ap},
|
||||
)
|
||||
trainer.fit()
|
||||
|
|
Loading…
Reference in New Issue