mirror of https://github.com/coqui-ai/TTS.git
config update and ssim implementation
This commit is contained in:
parent
9cef923d99
commit
59e1cf99d0
|
@ -76,6 +76,7 @@
|
||||||
"decoder_ssim_alpha": 0.5, // decoder ssim loss weight. If > 0, it is enabled
|
"decoder_ssim_alpha": 0.5, // decoder ssim loss weight. If > 0, it is enabled
|
||||||
"postnet_ssim_alpha": 0.25, // postnet ssim loss weight. If > 0, it is enabled
|
"postnet_ssim_alpha": 0.25, // postnet ssim loss weight. If > 0, it is enabled
|
||||||
"ga_alpha": 5.0, // weight for guided attention loss. If > 0, guided attention is enabled.
|
"ga_alpha": 5.0, // weight for guided attention loss. If > 0, guided attention is enabled.
|
||||||
|
"stopnet_pos_weight": 15.0, // pos class weight for stopnet loss since there are way more negative samples than positive samples.
|
||||||
|
|
||||||
|
|
||||||
// VALIDATION
|
// VALIDATION
|
||||||
|
|
|
@ -0,0 +1,75 @@
|
||||||
|
# taken from https://github.com/Po-Hsun-Su/pytorch-ssim
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from torch.autograd import Variable
|
||||||
|
import numpy as np
|
||||||
|
from math import exp
|
||||||
|
|
||||||
|
def gaussian(window_size, sigma):
|
||||||
|
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
|
||||||
|
return gauss/gauss.sum()
|
||||||
|
|
||||||
|
def create_window(window_size, channel):
|
||||||
|
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
|
||||||
|
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
|
||||||
|
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
|
||||||
|
return window
|
||||||
|
|
||||||
|
def _ssim(img1, img2, window, window_size, channel, size_average = True):
|
||||||
|
mu1 = F.conv2d(img1, window, padding = window_size//2, groups = channel)
|
||||||
|
mu2 = F.conv2d(img2, window, padding = window_size//2, groups = channel)
|
||||||
|
|
||||||
|
mu1_sq = mu1.pow(2)
|
||||||
|
mu2_sq = mu2.pow(2)
|
||||||
|
mu1_mu2 = mu1*mu2
|
||||||
|
|
||||||
|
sigma1_sq = F.conv2d(img1*img1, window, padding = window_size//2, groups = channel) - mu1_sq
|
||||||
|
sigma2_sq = F.conv2d(img2*img2, window, padding = window_size//2, groups = channel) - mu2_sq
|
||||||
|
sigma12 = F.conv2d(img1*img2, window, padding = window_size//2, groups = channel) - mu1_mu2
|
||||||
|
|
||||||
|
C1 = 0.01**2
|
||||||
|
C2 = 0.03**2
|
||||||
|
|
||||||
|
ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
|
||||||
|
|
||||||
|
if size_average:
|
||||||
|
return ssim_map.mean()
|
||||||
|
else:
|
||||||
|
return ssim_map.mean(1).mean(1).mean(1)
|
||||||
|
|
||||||
|
class SSIM(torch.nn.Module):
|
||||||
|
def __init__(self, window_size = 11, size_average = True):
|
||||||
|
super(SSIM, self).__init__()
|
||||||
|
self.window_size = window_size
|
||||||
|
self.size_average = size_average
|
||||||
|
self.channel = 1
|
||||||
|
self.window = create_window(window_size, self.channel)
|
||||||
|
|
||||||
|
def forward(self, img1, img2):
|
||||||
|
(_, channel, _, _) = img1.size()
|
||||||
|
|
||||||
|
if channel == self.channel and self.window.data.type() == img1.data.type():
|
||||||
|
window = self.window
|
||||||
|
else:
|
||||||
|
window = create_window(self.window_size, channel)
|
||||||
|
|
||||||
|
if img1.is_cuda:
|
||||||
|
window = window.cuda(img1.get_device())
|
||||||
|
window = window.type_as(img1)
|
||||||
|
|
||||||
|
self.window = window
|
||||||
|
self.channel = channel
|
||||||
|
|
||||||
|
|
||||||
|
return _ssim(img1, img2, window, self.window_size, channel, self.size_average)
|
||||||
|
|
||||||
|
def ssim(img1, img2, window_size = 11, size_average = True):
|
||||||
|
(_, channel, _, _) = img1.size()
|
||||||
|
window = create_window(window_size, channel)
|
||||||
|
|
||||||
|
if img1.is_cuda:
|
||||||
|
window = window.cuda(img1.get_device())
|
||||||
|
window = window.type_as(img1)
|
||||||
|
|
||||||
|
return _ssim(img1, img2, window, window_size, channel, size_average)
|
Loading…
Reference in New Issue