Uses tabs instead of columns

This commit is contained in:
Edresson Casanova 2023-11-23 17:50:41 -03:00
parent cc4f37e1b0
commit 7cc348ed76
2 changed files with 115 additions and 115 deletions

View File

@ -0,0 +1 @@
faster_whisper

View File

@ -95,11 +95,8 @@ def read_logs():
with gr.Blocks() as demo:
with gr.Tab("XTTS"):
state_vars = gr.State(
)
with gr.Row():
with gr.Column() as col1:
state_vars = gr.State()
with gr.Tab("Data processing"):
upload_file = gr.Audio(
sources="upload",
label="Select here the audio files that you want to use for XTTS trainining !",
@ -138,7 +135,36 @@ with gr.Blocks() as demo:
prompt_compute_btn = gr.Button(value="Step 1 - Create dataset.")
with gr.Column() as col2:
def preprocess_dataset(audio_path, language, state_vars, progress=gr.Progress(track_tqdm=True)):
# create a temp directory to save the dataset
out_path = tempfile.TemporaryDirectory().name
if audio_path is None:
# ToDo: raise an error
pass
else:
train_meta, eval_meta = format_audio_list([audio_path], target_language=language, out_path=out_path, gradio_progress=progress)
state_vars = {}
state_vars["train_csv"] = train_meta
state_vars["eval_csv"] = eval_meta
print(state_vars)
return "Dataset Processed!", state_vars
prompt_compute_btn.click(
fn=preprocess_dataset,
inputs=[
upload_file,
lang,
state_vars,
],
outputs=[
progress_data,
state_vars,
],
)
with gr.Tab("Fine-tuning XTTS"):
num_epochs = gr.Slider(
label="num_epochs",
minimum=1,
@ -163,7 +189,24 @@ with gr.Blocks() as demo:
demo.load(read_logs, None, logs_tts_train, every=1)
train_btn = gr.Button(value="Step 2 - Run the training")
with gr.Column() as col3:
def train_model(language, num_epochs, batch_size, state_vars, output_path="./", progress=gr.Progress(track_tqdm=True)):
# state_vars = {'train_csv': '/tmp/tmprh4k_vou/metadata_train.csv', 'eval_csv': '/tmp/tmprh4k_vou/metadata_eval.csv'}
config_path, original_xtts_checkpoint, vocab_file, exp_path, speaker_wav = train_gpt(language, num_epochs, batch_size, state_vars["train_csv"], state_vars["eval_csv"], output_path=output_path)
# copy original files to avoid parameters changes issues
os.system(f"cp {config_path} {exp_path}")
os.system(f"cp {vocab_file} {exp_path}")
ft_xtts_checkpoint = os.path.join(exp_path, "best_model.pth")
state_vars["config_path"] = config_path
state_vars["original_xtts_checkpoint"] = original_xtts_checkpoint
state_vars["vocab_file"] = vocab_file
state_vars["ft_xtts_checkpoint"] = ft_xtts_checkpoint
state_vars["speaker_audio_file"] = speaker_wav
return "Model training done!", state_vars, config_path, vocab_file, ft_xtts_checkpoint, speaker_wav
with gr.Tab("Inference"):
xtts_checkpoint = gr.Textbox(
label="XTTS checkpoint path:",
value="",
@ -212,51 +255,6 @@ with gr.Blocks() as demo:
reference_audio = gr.Audio(label="Reference audio used.")
def preprocess_dataset(audio_path, language, state_vars, progress=gr.Progress(track_tqdm=True)):
# create a temp directory to save the dataset
out_path = tempfile.TemporaryDirectory().name
if audio_path is None:
# ToDo: raise an error
pass
else:
train_meta, eval_meta = format_audio_list([audio_path], target_language=language, out_path=out_path, gradio_progress=progress)
state_vars = {}
state_vars["train_csv"] = train_meta
state_vars["eval_csv"] = eval_meta
print(state_vars)
return "Dataset Processed!", state_vars
prompt_compute_btn.click(
fn=preprocess_dataset,
inputs=[
upload_file,
lang,
state_vars,
],
outputs=[
progress_data,
state_vars,
],
)
def train_model(language, num_epochs, batch_size, state_vars, output_path="./", progress=gr.Progress(track_tqdm=True)):
# state_vars = {'train_csv': '/tmp/tmprh4k_vou/metadata_train.csv', 'eval_csv': '/tmp/tmprh4k_vou/metadata_eval.csv'}
config_path, original_xtts_checkpoint, vocab_file, exp_path, speaker_wav = train_gpt(language, num_epochs, batch_size, state_vars["train_csv"], state_vars["eval_csv"], output_path=output_path)
# copy original files to avoid parameters changes issues
os.system(f"cp {config_path} {exp_path}")
os.system(f"cp {vocab_file} {exp_path}")
ft_xtts_checkpoint = os.path.join(exp_path, "best_model.pth")
state_vars["config_path"] = config_path
state_vars["original_xtts_checkpoint"] = original_xtts_checkpoint
state_vars["vocab_file"] = vocab_file
state_vars["ft_xtts_checkpoint"] = ft_xtts_checkpoint
state_vars["speaker_audio_file"] = speaker_wav
return "Model training done!", state_vars, config_path, vocab_file, ft_xtts_checkpoint, speaker_wav
train_btn.click(
fn=train_model,
inputs=[
@ -268,6 +266,7 @@ with gr.Blocks() as demo:
outputs=[progress_train, state_vars, xtts_config, xtts_vocab, xtts_checkpoint, speaker_reference_audio],
)
tts_btn.click(
fn=run_tts,
inputs=[