mirror of https://github.com/coqui-ai/TTS.git
remove unused embeddings export
This commit is contained in:
parent
1496f271dc
commit
825734a3a9
|
@ -22,7 +22,7 @@ parser.add_argument(
|
||||||
help="Path to config file for training.",
|
help="Path to config file for training.",
|
||||||
)
|
)
|
||||||
parser.add_argument("data_path", type=str, help="Data path for wav files - directory or CSV file")
|
parser.add_argument("data_path", type=str, help="Data path for wav files - directory or CSV file")
|
||||||
parser.add_argument("output_path", type=str, help="path for training outputs.")
|
parser.add_argument("output_path", type=str, help="path for output speakers.json.")
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--target_dataset",
|
"--target_dataset",
|
||||||
type=str,
|
type=str,
|
||||||
|
@ -47,7 +47,6 @@ if args.target_dataset != "":
|
||||||
BaseDatasetConfig(name=args.target_dataset, path=args.data_path, meta_file_train=None, meta_file_val=None),
|
BaseDatasetConfig(name=args.target_dataset, path=args.data_path, meta_file_train=None, meta_file_val=None),
|
||||||
]
|
]
|
||||||
wav_files, _ = load_meta_data(dataset_config, eval_split=False)
|
wav_files, _ = load_meta_data(dataset_config, eval_split=False)
|
||||||
output_files = [wav_file[1].replace(data_path, args.output_path).replace(".wav", ".npy") for wav_file in wav_files]
|
|
||||||
else:
|
else:
|
||||||
# if target dataset is not defined
|
# if target dataset is not defined
|
||||||
if len(split_ext) > 0 and split_ext[1].lower() == ".csv":
|
if len(split_ext) > 0 and split_ext[1].lower() == ".csv":
|
||||||
|
@ -71,10 +70,8 @@ else:
|
||||||
# Parse all wav files in data_path
|
# Parse all wav files in data_path
|
||||||
wav_files = glob.glob(data_path + "/**/*.wav", recursive=True)
|
wav_files = glob.glob(data_path + "/**/*.wav", recursive=True)
|
||||||
|
|
||||||
output_files = [wav_file.replace(data_path, args.output_path).replace(".wav", ".npy") for wav_file in wav_files]
|
|
||||||
|
|
||||||
for output_file in output_files:
|
os.makedirs(args.output_path, exist_ok=True)
|
||||||
os.makedirs(os.path.dirname(output_file), exist_ok=True)
|
|
||||||
|
|
||||||
# define Encoder model
|
# define Encoder model
|
||||||
model = setup_model(c)
|
model = setup_model(c)
|
||||||
|
@ -96,7 +93,6 @@ for idx, wav_file in enumerate(tqdm(wav_files)):
|
||||||
mel_spec = mel_spec.cuda()
|
mel_spec = mel_spec.cuda()
|
||||||
embedd = model.compute_embedding(mel_spec)
|
embedd = model.compute_embedding(mel_spec)
|
||||||
embedd = embedd.detach().cpu().numpy()
|
embedd = embedd.detach().cpu().numpy()
|
||||||
np.save(output_files[idx], embedd)
|
|
||||||
|
|
||||||
if args.target_dataset != "":
|
if args.target_dataset != "":
|
||||||
# create speaker_mapping if target dataset is defined
|
# create speaker_mapping if target dataset is defined
|
||||||
|
@ -110,3 +106,4 @@ if args.target_dataset != "":
|
||||||
# save speaker_mapping if target dataset is defined
|
# save speaker_mapping if target dataset is defined
|
||||||
mapping_file_path = os.path.join(args.output_path, "speakers.json")
|
mapping_file_path = os.path.join(args.output_path, "speakers.json")
|
||||||
save_speaker_mapping(args.output_path, speaker_mapping)
|
save_speaker_mapping(args.output_path, speaker_mapping)
|
||||||
|
print("Speaker embedding saved at:", mapping_file_path)
|
||||||
|
|
Loading…
Reference in New Issue