mirror of https://github.com/coqui-ai/TTS.git
Printing fix with flush and spaceing
This commit is contained in:
parent
8864252941
commit
8bc4fe8aac
14
train.py
14
train.py
|
@ -182,7 +182,7 @@ def train(model, criterion, criterion_st, data_loader, optimizer, optimizer_st,
|
||||||
# print epoch stats
|
# print epoch stats
|
||||||
print(" | | > EPOCH END -- GlobalStep:{} AvgTotalLoss:{:.5f} "\
|
print(" | | > EPOCH END -- GlobalStep:{} AvgTotalLoss:{:.5f} "\
|
||||||
"AvgLinearLoss:{:.5f} AvgMelLoss:{:.5f} "\
|
"AvgLinearLoss:{:.5f} AvgMelLoss:{:.5f} "\
|
||||||
"AvgStopLoss:{:.5f} EpochTime:{:.2f}"\
|
"AvgStopLoss:{:.5f} EpochTime:{:.2f} "\
|
||||||
"AvgStepTime:{:.2f}".format(current_step,
|
"AvgStepTime:{:.2f}".format(current_step,
|
||||||
avg_total_loss,
|
avg_total_loss,
|
||||||
avg_linear_loss,
|
avg_linear_loss,
|
||||||
|
@ -260,7 +260,7 @@ def evaluate(model, criterion, criterion_st, data_loader, ap, current_step):
|
||||||
"StopLoss: {:.5f} ".format(loss.item(),
|
"StopLoss: {:.5f} ".format(loss.item(),
|
||||||
linear_loss.item(),
|
linear_loss.item(),
|
||||||
mel_loss.item(),
|
mel_loss.item(),
|
||||||
stop_loss.item()))
|
stop_loss.item()), flush=True)
|
||||||
|
|
||||||
avg_linear_loss += linear_loss.item()
|
avg_linear_loss += linear_loss.item()
|
||||||
avg_mel_loss += mel_loss.item()
|
avg_mel_loss += mel_loss.item()
|
||||||
|
@ -373,7 +373,7 @@ def main(args):
|
||||||
ap.num_freq,
|
ap.num_freq,
|
||||||
c.num_mels,
|
c.num_mels,
|
||||||
c.r)
|
c.r)
|
||||||
print(" | > Num output units : {}".format(ap.num_freq))
|
print(" | > Num output units : {}".format(ap.num_freq), flush=True)
|
||||||
|
|
||||||
optimizer = optim.Adam(model.parameters(), lr=c.lr)
|
optimizer = optim.Adam(model.parameters(), lr=c.lr)
|
||||||
optimizer_st = optim.Adam(model.decoder.stopnet.parameters(), lr=c.lr)
|
optimizer_st = optim.Adam(model.decoder.stopnet.parameters(), lr=c.lr)
|
||||||
|
@ -394,20 +394,20 @@ def main(args):
|
||||||
for k, v in state.items():
|
for k, v in state.items():
|
||||||
if torch.is_tensor(v):
|
if torch.is_tensor(v):
|
||||||
state[k] = v.cuda()
|
state[k] = v.cuda()
|
||||||
print(" > Model restored from step %d" % checkpoint['step'])
|
print(" > Model restored from step %d" % checkpoint['step'], flush=True)
|
||||||
start_epoch = checkpoint['step'] // len(train_loader)
|
start_epoch = checkpoint['step'] // len(train_loader)
|
||||||
best_loss = checkpoint['linear_loss']
|
best_loss = checkpoint['linear_loss']
|
||||||
args.restore_step = checkpoint['step']
|
args.restore_step = checkpoint['step']
|
||||||
else:
|
else:
|
||||||
args.restore_step = 0
|
args.restore_step = 0
|
||||||
print("\n > Starting a new training")
|
print("\n > Starting a new training", flush=True)
|
||||||
if use_cuda:
|
if use_cuda:
|
||||||
model = nn.DataParallel(model.cuda())
|
model = nn.DataParallel(model.cuda())
|
||||||
criterion.cuda()
|
criterion.cuda()
|
||||||
criterion_st.cuda()
|
criterion_st.cuda()
|
||||||
|
|
||||||
num_params = count_parameters(model)
|
num_params = count_parameters(model)
|
||||||
print(" | > Model has {} parameters".format(num_params))
|
print(" | > Model has {} parameters".format(num_params), flush=True)
|
||||||
|
|
||||||
if not os.path.exists(CHECKPOINT_PATH):
|
if not os.path.exists(CHECKPOINT_PATH):
|
||||||
os.mkdir(CHECKPOINT_PATH)
|
os.mkdir(CHECKPOINT_PATH)
|
||||||
|
@ -418,7 +418,7 @@ def main(args):
|
||||||
for epoch in range(0, c.epochs):
|
for epoch in range(0, c.epochs):
|
||||||
train_loss, current_step = train(model, criterion, criterion_st, train_loader, optimizer, optimizer_st, ap, epoch)
|
train_loss, current_step = train(model, criterion, criterion_st, train_loader, optimizer, optimizer_st, ap, epoch)
|
||||||
val_loss = evaluate(model, criterion, criterion_st, val_loader, ap, current_step)
|
val_loss = evaluate(model, criterion, criterion_st, val_loader, ap, current_step)
|
||||||
print(" | > Train Loss: {:.5f} Validation Loss: {:.5f}".format(train_loss, val_loss))
|
print(" | > Train Loss: {:.5f} Validation Loss: {:.5f}".format(train_loss, val_loss), flush=True)
|
||||||
best_loss = save_best_model(model, optimizer, train_loss,
|
best_loss = save_best_model(model, optimizer, train_loss,
|
||||||
best_loss, OUT_PATH,
|
best_loss, OUT_PATH,
|
||||||
current_step, epoch)
|
current_step, epoch)
|
||||||
|
|
|
@ -105,4 +105,4 @@ class AudioProcessor(object):
|
||||||
else:
|
else:
|
||||||
D = self._lws_processor().stft(y).T
|
D = self._lws_processor().stft(y).T
|
||||||
S = self._amp_to_db(self._linear_to_mel(np.abs(D))) - self.ref_level_db
|
S = self._amp_to_db(self._linear_to_mel(np.abs(D))) - self.ref_level_db
|
||||||
return self._normalize(S)
|
return self._normalize(S)
|
Loading…
Reference in New Issue