Remove commented codes

This commit is contained in:
Eren G??lge 2023-06-28 12:14:37 +02:00
parent 6b9ebf5aab
commit 91cc11d636
1 changed files with 0 additions and 87 deletions

View File

@ -37,12 +37,6 @@ if not hasattr(torch.nn.functional, "scaled_dot_product_attention"):
)
# def _string_md5(s):
# m = hashlib.md5()
# m.update(s.encode("utf-8"))
# return m.hexdigest()
def _md5(fname):
hash_md5 = hashlib.md5()
with open(fname, "rb") as f:
@ -51,20 +45,6 @@ def _md5(fname):
return hash_md5.hexdigest()
# def _get_ckpt_path(model_type, CACHE_DIR):
# model_name = _string_md5(REMOTE_MODEL_PATHS[model_type]["path"])
# return os.path.join(CACHE_DIR, f"{model_name}.pt")
# S3_BUCKET_PATH_RE = r"s3\:\/\/(.+?)\/"
# def _parse_s3_filepath(s3_filepath):
# bucket_name = re.search(S3_BUCKET_PATH_RE, s3_filepath).group(1)
# rel_s3_filepath = re.sub(S3_BUCKET_PATH_RE, "", s3_filepath)
# return bucket_name, rel_s3_filepath
def _download(from_s3_path, to_local_path, CACHE_DIR):
os.makedirs(CACHE_DIR, exist_ok=True)
response = requests.get(from_s3_path, stream=True)
@ -111,15 +91,6 @@ def clear_cuda_cache():
torch.cuda.synchronize()
# def clean_models(model_key=None):
# global models
# model_keys = [model_key] if model_key is not None else models.keys()
# for k in model_keys:
# if k in models:
# del models[k]
# clear_cuda_cache()
def load_model(ckpt_path, device, config, model_type="text"):
logger.info(f"loading {model_type} model from {ckpt_path}...")
@ -187,61 +158,3 @@ def load_model(ckpt_path, device, config, model_type="text"):
del checkpoint, state_dict
clear_cuda_cache()
return model, config
# def _load_codec_model(device):
# model = EncodecModel.encodec_model_24khz()
# model.set_target_bandwidth(6.0)
# model.eval()
# model.to(device)
# clear_cuda_cache()
# return model
# def load_model(ckpt_path=None, use_gpu=True, force_reload=False, model_type="text"):
# _load_model_f = functools.partial(_load_model, model_type=model_type)
# if model_type not in ("text", "coarse", "fine"):
# raise NotImplementedError()
# global models
# if torch.cuda.device_count() == 0 or not use_gpu:
# device = "cpu"
# else:
# device = "cuda"
# model_key = str(device) + f"__{model_type}"
# if model_key not in models or force_reload:
# if ckpt_path is None:
# ckpt_path = _get_ckpt_path(model_type)
# clean_models(model_key=model_key)
# model = _load_model_f(ckpt_path, device)
# models[model_key] = model
# return models[model_key]
# def load_codec_model(use_gpu=True, force_reload=False):
# global models
# if torch.cuda.device_count() == 0 or not use_gpu:
# device = "cpu"
# else:
# device = "cuda"
# model_key = str(device) + f"__codec"
# if model_key not in models or force_reload:
# clean_models(model_key=model_key)
# model = _load_codec_model(device)
# models[model_key] = model
# return models[model_key]
# def preload_models(
# text_ckpt_path=None, coarse_ckpt_path=None, fine_ckpt_path=None, use_gpu=True, use_smaller_models=False
# ):
# global USE_SMALLER_MODELS
# global REMOTE_MODEL_PATHS
# if use_smaller_models:
# USE_SMALLER_MODELS = True
# logger.info("Using smaller models generation.py")
# REMOTE_MODEL_PATHS = SMALL_REMOTE_MODEL_PATHS
# _ = load_model(ckpt_path=text_ckpt_path, model_type="text", use_gpu=use_gpu, force_reload=True)
# _ = load_model(ckpt_path=coarse_ckpt_path, model_type="coarse", use_gpu=use_gpu, force_reload=True)
# _ = load_model(ckpt_path=fine_ckpt_path, model_type="fine", use_gpu=use_gpu, force_reload=True)
# _ = load_codec_model(use_gpu=use_gpu, force_reload=True)