Add syntacc training recipe

This commit is contained in:
Edresson Casanova 2023-10-14 16:41:05 -03:00
parent 2bdc7a5675
commit a45dfd6266
4 changed files with 313 additions and 25 deletions

View File

@ -6,8 +6,7 @@ from torch.nn import functional as F
from TTS.tts.utils.helpers import sequence_mask
from TTS.tts.layers.generic.normalization import LayerNorm, LayerNorm2
# import sys
# sys.setrecursionlimit(9999999)
class AdaptiveWeightConv(nn.Module):
def __init__(self, conv_module, in_channels, out_channels, kernel_size, r=0, alpha=1, dropout=0., num_classes=None, **kwargs):
super(AdaptiveWeightConv, self).__init__()
@ -558,7 +557,7 @@ class TextEncoder(nn.Module):
super().__init__()
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.num_adaptive_weight_classes = num_adaptive_weight_classes
self.emb = nn.Embedding(n_vocab, hidden_channels)
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
@ -582,12 +581,7 @@ class TextEncoder(nn.Module):
self.proj = Conv1d(hidden_channels, out_channels * 2, 1, r=1 if num_adaptive_weight_classes else 0, num_classes=num_adaptive_weight_classes)
def forward(self, x, x_lengths, lang_emb=None, class_id=None):
"""
Shapes:
- x: :math:`[B, T]`
- x_length: :math:`[B]`
"""
def forward_mini_batch(self, x, x_lengths, lang_emb=None, class_id=None):
assert x.shape[0] == x_lengths.shape[0]
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
@ -604,6 +598,41 @@ class TextEncoder(nn.Module):
m, logs = torch.split(stats, self.out_channels, dim=1)
return x, m, logs, x_mask
def forward(self, x, x_lengths, lang_emb=None, class_id=None):
"""
Shapes:
- x: :math:`[B, T]`
- x_length: :math:`[B]`
"""
batch_size = x.size(0)
if self.num_adaptive_weight_classes and batch_size > 1:
num_utter_per_class = int(batch_size/self.num_adaptive_weight_classes)
# mini batch inference for each class
outs_x = []
outs_m = []
outs_logs = []
outs_x_mask = []
start = 0
for i in range(self.num_adaptive_weight_classes):
start = num_utter_per_class * i
end = start + num_utter_per_class
class_id_item = class_id[start:end][0]
x_out, m_out, logs_out, x_mask_out = self.forward_mini_batch(x[start:end], x_lengths[start:end], lang_emb=lang_emb[start:end] if lang_emb else None, class_id=class_id_item)
outs_x.append(x_out)
outs_m.append(m_out)
outs_logs.append(logs_out)
outs_x_mask.append(x_mask_out)
x = torch.stack(outs_x, dim=0).view(batch_size, *x_out.shape[1:])
m = torch.stack(outs_m, dim=0).view(batch_size, *m_out.shape[1:])
logs = torch.stack(outs_logs, dim=0).view(batch_size, *logs_out.shape[1:])
x_mask = torch.stack(outs_x_mask, dim=0).view(batch_size, *x_mask_out.shape[1:])
return x, m, logs, x_mask
else:
return self.forward_mini_batch(x, x_lengths, lang_emb=lang_emb, class_id=class_id)
if __name__ == '__main__':
txt_enc = TextEncoder(
n_vocab=100,
@ -642,7 +671,7 @@ if __name__ == '__main__':
kernel_size=3,
dropout_p=0.0,
language_emb_dim=None,
num_adaptive_weight_classes=5,
num_adaptive_weight_classes=None,
)
out = txt_enc(

View File

@ -35,7 +35,7 @@ from TTS.tts.utils.text.characters import BaseCharacters, BaseVocabulary, _chara
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.tts.utils.visual import plot_alignment
from TTS.utils.io import load_fsspec
from TTS.utils.samplers import BucketBatchSampler
from TTS.utils.samplers import BucketBatchSampler, PerfectBatchSampler
from TTS.vocoder.models.hifigan_generator import HifiganGenerator
from TTS.vocoder.utils.generic_utils import plot_results
@ -259,6 +259,7 @@ class VitsDataset(TTSDataset):
super().__init__(*args, **kwargs)
self.pad_id = self.tokenizer.characters.pad_id
self.model_args = model_args
self.num_classes = None
def __getitem__(self, idx):
item = self.samples[idx]
@ -317,6 +318,13 @@ class VitsDataset(TTSDataset):
"""
# convert list of dicts to dict of lists
B = len(batch)
# agroup samples of each class in the batch. perfect sampler produces [3,2,1,3,2,1] we need [3,3,2,2,1,1]
if self.model_args.use_perfect_class_batch_sampler:
new_batch = []
for i in range(self.num_classes):
new_batch.extend(batch[i:B:self.num_classes])
batch = new_batch
batch = {k: [dic[k] for dic in batch] for k in batch[0]}
_, ids_sorted_decreasing = torch.sort(
@ -546,6 +554,9 @@ class VitsArgs(Coqpit):
out_channels: int = 513
spec_segment_size: int = 32
hidden_channels: int = 192
use_adaptive_weight_text_encoder: bool = False
use_perfect_class_batch_sampler: bool = False
perfect_class_batch_sampler_key: str = ""
hidden_channels_ffn_text_encoder: int = 768
num_heads_text_encoder: int = 2
num_layers_text_encoder: int = 6
@ -660,7 +671,8 @@ class Vits(BaseTTS):
self.args.num_layers_text_encoder,
self.args.kernel_size_text_encoder,
self.args.dropout_p_text_encoder,
language_emb_dim=self.embedded_language_dim,
language_emb_dim=self.embedded_language_dim if not self.args.use_adaptive_weight_text_encoder else 0,
num_adaptive_weight_classes=self.num_languages if self.args.use_adaptive_weight_text_encoder else None,
)
self.posterior_encoder = PosteriorEncoder(
@ -690,7 +702,7 @@ class Vits(BaseTTS):
self.args.dropout_p_duration_predictor,
4,
cond_channels=self.embedded_speaker_dim if self.args.condition_dp_on_speaker else 0,
language_emb_dim=self.embedded_language_dim,
language_emb_dim=self.embedded_language_dim if not self.args.use_adaptive_weight_text_encoder else 0,
)
else:
self.duration_predictor = DurationPredictor(
@ -699,7 +711,7 @@ class Vits(BaseTTS):
3,
self.args.dropout_p_duration_predictor,
cond_channels=self.embedded_speaker_dim,
language_emb_dim=self.embedded_language_dim,
language_emb_dim=self.embedded_language_dim if not self.args.use_adaptive_weight_text_encoder else 0,
)
self.waveform_decoder = HifiganGenerator(
@ -794,12 +806,14 @@ class Vits(BaseTTS):
if self.args.language_ids_file is not None:
self.language_manager = LanguageManager(language_ids_file_path=config.language_ids_file)
if self.args.use_language_embedding and self.language_manager:
print(" > initialization of language-embedding layers.")
if self.language_manager:
self.num_languages = self.language_manager.num_languages
self.embedded_language_dim = self.args.embedded_language_dim
self.emb_l = nn.Embedding(self.num_languages, self.embedded_language_dim)
torch.nn.init.xavier_uniform_(self.emb_l.weight)
self.embedded_language_dim = 0
if self.args.use_language_embedding:
print(" > initialization of language-embedding layers.")
self.embedded_language_dim = self.args.embedded_language_dim
self.emb_l = nn.Embedding(self.num_languages, self.embedded_language_dim)
torch.nn.init.xavier_uniform_(self.emb_l.weight)
else:
self.embedded_language_dim = 0
@ -1016,7 +1030,7 @@ class Vits(BaseTTS):
if self.args.use_language_embedding and lid is not None:
lang_emb = self.emb_l(lid).unsqueeze(-1)
x, m_p, logs_p, x_mask = self.text_encoder(x, x_lengths, lang_emb=lang_emb)
x, m_p, logs_p, x_mask = self.text_encoder(x, x_lengths, lang_emb=lang_emb, class_id=lid)
# posterior encoder
z, m_q, logs_q, y_mask = self.posterior_encoder(y, y_lengths, g=g)
@ -1122,7 +1136,7 @@ class Vits(BaseTTS):
if self.args.use_language_embedding and lid is not None:
lang_emb = self.emb_l(lid).unsqueeze(-1)
x, m_p, logs_p, x_mask = self.text_encoder(x, x_lengths, lang_emb=lang_emb)
x, m_p, logs_p, x_mask = self.text_encoder(x, x_lengths, lang_emb=lang_emb, class_id=lid)
if durations is None:
if self.args.use_sdp:
@ -1413,7 +1427,7 @@ class Vits(BaseTTS):
speaker_id = self.speaker_manager.name_to_id[speaker_name]
# get language id
if hasattr(self, "language_manager") and config.use_language_embedding and language_name is not None:
if hasattr(self, "language_manager") and (config.use_language_embedding or config.use_adaptive_weight_text_encoder) and language_name is not None:
language_id = self.language_manager.name_to_id[language_name]
return {
@ -1482,7 +1496,7 @@ class Vits(BaseTTS):
d_vectors = torch.FloatTensor(d_vectors)
# get language ids from language names
if self.language_manager is not None and self.language_manager.name_to_id and self.args.use_language_embedding:
if self.language_manager is not None and self.language_manager.name_to_id and (self.args.use_language_embedding or self.args.use_adaptive_weight_text_encoder):
language_ids = [self.language_manager.name_to_id[ln] for ln in batch["language_names"]]
if language_ids is not None:
@ -1547,6 +1561,21 @@ class Vits(BaseTTS):
return batch
def get_sampler(self, config: Coqpit, dataset: TTSDataset, num_gpus=1, is_eval=False):
if self.args.use_perfect_class_batch_sampler:
batch_size = config.eval_batch_size if is_eval else config.batch_size
data_items = dataset.samples
classes = [item[self.args.perfect_class_batch_sampler_key] for item in data_items]
classes = set(classes)
dataset.num_classes = len(classes)
batch_sampler = PerfectBatchSampler(
dataset_items=data_items,
classes=classes,
batch_size=batch_size,
num_classes_in_batch=len(classes),
label_key=self.args.perfect_class_batch_sampler_key,
)
return batch_sampler
weights = None
data_items = dataset.samples
if getattr(config, "use_weighted_sampler", False):
@ -1631,7 +1660,7 @@ class Vits(BaseTTS):
pin_memory=False,
)
else:
if num_gpus > 1:
if num_gpus > 1 and not self.args.use_perfect_class_batch_sampler:
loader = DataLoader(
dataset,
sampler=sampler,

View File

@ -92,7 +92,7 @@ class LanguageManager(BaseIDManager):
config (Coqpit): Coqpit config.
"""
language_manager = None
if check_config_and_model_args(config, "use_language_embedding", True):
if check_config_and_model_args(config, "use_language_embedding", True) or check_config_and_model_args(config, "use_adaptive_weight_text_encoder", True):
if config.get("language_ids_file", None):
language_manager = LanguageManager(language_ids_file_path=config.language_ids_file)
language_manager = LanguageManager(config=config)

View File

@ -0,0 +1,230 @@
import os
import torch
from trainer import Trainer, TrainerArgs
from TTS.bin.compute_embeddings import compute_embeddings
from TTS.bin.resample import resample_files
from TTS.config.shared_configs import BaseDatasetConfig
from TTS.tts.configs.vits_config import VitsConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.vits import CharactersConfig, Vits, VitsArgs, VitsAudioConfig, VitsDataset
from TTS.utils.downloaders import download_libri_tts
from torch.utils.data import DataLoader
from TTS.utils.samplers import PerfectBatchSampler
torch.set_num_threads(24)
# pylint: disable=W0105
"""
This recipe replicates the first experiment proposed in the CML-TTS paper (https://arxiv.org/abs/2306.10097). It uses the YourTTS model.
YourTTS model is based on the VITS model however it uses external speaker embeddings extracted from a pre-trained speaker encoder and has small architecture changes.
"""
CURRENT_PATH = os.path.dirname(os.path.abspath(__file__))
# Name of the run for the Trainer
RUN_NAME = "YourTTS-CML-TTS"
# Path where you want to save the models outputs (configs, checkpoints and tensorboard logs)
OUT_PATH = os.path.dirname(os.path.abspath(__file__)) # "/raid/coqui/Checkpoints/original-YourTTS/"
# If you want to do transfer learning and speedup your training you can set here the path to the CML-TTS available checkpoint that cam be downloaded here: https://drive.google.com/u/2/uc?id=1yDCSJ1pFZQTHhL09GMbOrdjcPULApa0p
RESTORE_PATH = None # "/raid/edresson/CML_YourTTS/checkpoints_yourtts_cml_tts_dataset/best_model.pth" # Download the checkpoint here: https://drive.google.com/u/2/uc?id=1yDCSJ1pFZQTHhL09GMbOrdjcPULApa0p
# This paramter is useful to debug, it skips the training epochs and just do the evaluation and produce the test sentences
SKIP_TRAIN_EPOCH = False
# Set here the batch size to be used in training and evaluation
BATCH_SIZE = 6
# Training Sampling rate and the target sampling rate for resampling the downloaded dataset (Note: If you change this you might need to redownload the dataset !!)
# Note: If you add new datasets, please make sure that the dataset sampling rate and this parameter are matching, otherwise resample your audios
SAMPLE_RATE = 24000
# Max audio length in seconds to be used in training (every audio bigger than it will be ignored)
MAX_AUDIO_LEN_IN_SECONDS = float("inf")
# DEfine here the datasets config
esd_train_config = BaseDatasetConfig(
formatter="coqui",
dataset_name="esd",
meta_file_train="metadata_with_basic_metrics.csv", # TODO: compute emotion and d-vectors for test and evaluation splits
path="/raid/datasets/Emotion/ESD-44kHz-VAD-renormalized/",
language="en"
)
savee_config = BaseDatasetConfig(
formatter="coqui",
dataset_name="savee",
path="/raid/datasets/SAVEE-44khz/",
meta_file_train="metadata_with_basic_metrics.csv",
language="pt"
)
game1_config = BaseDatasetConfig(
formatter="coqui",
dataset_name="game1",
path="/raid/datasets/new_game_data/game1/datasetbuilder_formatted/",
meta_file_train="metadata_with_basic_metrics.csv",
language="de",
)
DATASETS_CONFIG_LIST = [esd_train_config, savee_config, game1_config]
### Extract speaker embeddings
SPEAKER_ENCODER_CHECKPOINT_PATH = (
"https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar"
)
SPEAKER_ENCODER_CONFIG_PATH = "https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json"
D_VECTOR_FILES = [] # List of speaker embeddings/d-vectors to be used during the training
# Iterates all the dataset configs checking if the speakers embeddings are already computated, if not compute it
for dataset_conf in DATASETS_CONFIG_LIST:
# Check if the embeddings weren't already computed, if not compute it
embeddings_file = os.path.join(dataset_conf.path, "H_ASP_speaker_embeddings.pth")
if not os.path.isfile(embeddings_file):
print(f">>> Computing the speaker embeddings for the {dataset_conf.dataset_name} dataset")
compute_embeddings(
SPEAKER_ENCODER_CHECKPOINT_PATH,
SPEAKER_ENCODER_CONFIG_PATH,
embeddings_file,
old_speakers_file=None,
config_dataset_path=None,
formatter_name=dataset_conf.formatter,
dataset_name=dataset_conf.dataset_name,
dataset_path=dataset_conf.path,
meta_file_train=dataset_conf.meta_file_train,
meta_file_val=dataset_conf.meta_file_val,
disable_cuda=False,
no_eval=False,
)
D_VECTOR_FILES.append(embeddings_file)
# Audio config used in training.
audio_config = VitsAudioConfig(
sample_rate=SAMPLE_RATE,
hop_length=256,
win_length=1024,
fft_size=1024,
mel_fmin=0.0,
mel_fmax=None,
num_mels=80,
)
# Init VITSArgs setting the arguments that are needed for the YourTTS model
model_args = VitsArgs(
spec_segment_size=62,
hidden_channels=192,
hidden_channels_ffn_text_encoder=768,
num_heads_text_encoder=2,
num_layers_text_encoder=10,
kernel_size_text_encoder=3,
dropout_p_text_encoder=0.1,
d_vector_file=D_VECTOR_FILES,
use_d_vector_file=True,
d_vector_dim=512,
speaker_encoder_model_path=SPEAKER_ENCODER_CHECKPOINT_PATH,
speaker_encoder_config_path=SPEAKER_ENCODER_CONFIG_PATH,
resblock_type_decoder="2", # In the paper, we accidentally trained the YourTTS using ResNet blocks type 2, if you like you can use the ResNet blocks type 1 like the VITS model
# Useful parameters to enable the Speaker Consistency Loss (SCL) described in the paper
use_speaker_encoder_as_loss=False,
# Useful parameters to enable multilingual training
use_language_embedding=False,
embedded_language_dim=4,
use_adaptive_weight_text_encoder=True,
use_perfect_class_batch_sampler=True,
perfect_class_batch_sampler_key="language"
)
# General training config, here you can change the batch size and others useful parameters
config = VitsConfig(
output_path=OUT_PATH,
model_args=model_args,
run_name=RUN_NAME,
project_name="SYNTACC",
run_description="""
- YourTTS with SYNTACC text encoder
""",
dashboard_logger="tensorboard",
logger_uri=None,
audio=audio_config,
batch_size=BATCH_SIZE,
batch_group_size=48,
eval_batch_size=BATCH_SIZE,
num_loader_workers=8,
eval_split_max_size=256,
print_step=50,
plot_step=100,
log_model_step=1000,
save_step=5000,
save_n_checkpoints=2,
save_checkpoints=True,
# target_loss="loss_1",
print_eval=False,
use_phonemes=False,
phonemizer="espeak",
phoneme_language="en",
compute_input_seq_cache=True,
add_blank=True,
text_cleaner="multilingual_cleaners",
characters=CharactersConfig(
characters_class="TTS.tts.models.vits.VitsCharacters",
pad="_",
eos="&",
bos="*",
blank=None,
characters="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\u00a1\u00a3\u00b7\u00b8\u00c0\u00c1\u00c2\u00c3\u00c4\u00c5\u00c7\u00c8\u00c9\u00ca\u00cb\u00cc\u00cd\u00ce\u00cf\u00d1\u00d2\u00d3\u00d4\u00d5\u00d6\u00d9\u00da\u00db\u00dc\u00df\u00e0\u00e1\u00e2\u00e3\u00e4\u00e5\u00e7\u00e8\u00e9\u00ea\u00eb\u00ec\u00ed\u00ee\u00ef\u00f1\u00f2\u00f3\u00f4\u00f5\u00f6\u00f9\u00fa\u00fb\u00fc\u0101\u0104\u0105\u0106\u0107\u010b\u0119\u0141\u0142\u0143\u0144\u0152\u0153\u015a\u015b\u0161\u0178\u0179\u017a\u017b\u017c\u020e\u04e7\u05c2\u1b20",
punctuations="\u2014!'(),-.:;?\u00bf ",
phonemes="iy\u0268\u0289\u026fu\u026a\u028f\u028ae\u00f8\u0258\u0259\u0275\u0264o\u025b\u0153\u025c\u025e\u028c\u0254\u00e6\u0250a\u0276\u0251\u0252\u1d7b\u0298\u0253\u01c0\u0257\u01c3\u0284\u01c2\u0260\u01c1\u029bpbtd\u0288\u0256c\u025fk\u0261q\u0262\u0294\u0274\u014b\u0272\u0273n\u0271m\u0299r\u0280\u2c71\u027e\u027d\u0278\u03b2fv\u03b8\u00f0sz\u0283\u0292\u0282\u0290\u00e7\u029dx\u0263\u03c7\u0281\u0127\u0295h\u0266\u026c\u026e\u028b\u0279\u027bj\u0270l\u026d\u028e\u029f\u02c8\u02cc\u02d0\u02d1\u028dw\u0265\u029c\u02a2\u02a1\u0255\u0291\u027a\u0267\u025a\u02de\u026b'\u0303' ",
is_unique=True,
is_sorted=True,
),
phoneme_cache_path=None,
precompute_num_workers=12,
start_by_longest=True,
datasets=DATASETS_CONFIG_LIST,
cudnn_benchmark=False,
max_audio_len=SAMPLE_RATE * MAX_AUDIO_LEN_IN_SECONDS,
mixed_precision=False,
test_sentences=[
["Voc\u00ea ter\u00e1 a vista do topo da montanha que voc\u00ea escalar.", "ESD_0012", None, "pt"],
["Quando voc\u00ea n\u00e3o corre nenhum risco, voc\u00ea arrisca tudo.", "ESD_0012", None, "pt"],
],
# Enable the weighted sampler
use_weighted_sampler=True,
# Ensures that all speakers are seen in the training batch equally no matter how many samples each speaker has
# weighted_sampler_attrs={"language": 1.0, "speaker_name": 1.0},
weighted_sampler_attrs={"language": 1.0},
weighted_sampler_multipliers={
# "speaker_name": {
# you can force the batching scheme to give a higher weight to a certain speaker and then this speaker will appears more frequently on the batch.
# It will speedup the speaker adaptation process. Considering the CML train dataset and "new_speaker" as the speaker name of the speaker that you want to adapt.
# The line above will make the balancer consider the "new_speaker" as 106 speakers so 1/4 of the number of speakers present on CML dataset.
# 'new_speaker': 106, # (CML tot. train speaker)/4 = (424/4) = 106
# }
},
# It defines the Speaker Consistency Loss (SCL) α to 9 like the YourTTS paper
speaker_encoder_loss_alpha=9.0,
)
# Load all the datasets samples and split traning and evaluation sets
train_samples, eval_samples = load_tts_samples(
config.datasets,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# Init the model
model = Vits.init_from_config(config)
# Init the trainer and 🚀
trainer = Trainer(
TrainerArgs(restore_path=RESTORE_PATH, skip_train_epoch=SKIP_TRAIN_EPOCH, start_with_eval=True),
config,
output_path=OUT_PATH,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
)
trainer.fit()