mirror of https://github.com/coqui-ai/TTS.git
update tests
This commit is contained in:
parent
7eb0c60d2e
commit
a878d8fb42
|
@ -1,4 +1,5 @@
|
||||||
import os
|
import os
|
||||||
|
import torch
|
||||||
import unittest
|
import unittest
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
@ -11,9 +12,9 @@ from TTS.utils.io import load_config
|
||||||
encoder_config_path = os.path.join(get_tests_input_path(), "test_speaker_encoder_config.json")
|
encoder_config_path = os.path.join(get_tests_input_path(), "test_speaker_encoder_config.json")
|
||||||
encoder_model_path = os.path.join(get_tests_input_path(), "dummy_speaker_encoder.pth.tar")
|
encoder_model_path = os.path.join(get_tests_input_path(), "dummy_speaker_encoder.pth.tar")
|
||||||
sample_wav_path = os.path.join(get_tests_input_path(), "../data/ljspeech/wavs/LJ001-0001.wav")
|
sample_wav_path = os.path.join(get_tests_input_path(), "../data/ljspeech/wavs/LJ001-0001.wav")
|
||||||
|
sample_wav_path2 = os.path.join(get_tests_input_path(), "../data/ljspeech/wavs/LJ001-0002.wav")
|
||||||
x_vectors_file_path = os.path.join(get_tests_input_path(), "../data/dummy_speakers.json")
|
x_vectors_file_path = os.path.join(get_tests_input_path(), "../data/dummy_speakers.json")
|
||||||
|
|
||||||
|
|
||||||
class SpeakerManagerTest(unittest.TestCase):
|
class SpeakerManagerTest(unittest.TestCase):
|
||||||
"""Test SpeakerManager for loading embedding files and computing x_vectors from waveforms"""
|
"""Test SpeakerManager for loading embedding files and computing x_vectors from waveforms"""
|
||||||
@staticmethod
|
@staticmethod
|
||||||
|
@ -32,6 +33,21 @@ class SpeakerManagerTest(unittest.TestCase):
|
||||||
x_vector = manager.compute_x_vector(mel.T)
|
x_vector = manager.compute_x_vector(mel.T)
|
||||||
assert x_vector.shape[1] == 256
|
assert x_vector.shape[1] == 256
|
||||||
|
|
||||||
|
# compute x_vector directly from an input file
|
||||||
|
x_vector = manager.compute_x_vector_from_clip(sample_wav_path)
|
||||||
|
x_vector2 = manager.compute_x_vector_from_clip(sample_wav_path)
|
||||||
|
x_vector = torch.FloatTensor(x_vector)
|
||||||
|
x_vector2 = torch.FloatTensor(x_vector2)
|
||||||
|
assert x_vector.shape[0] == 256
|
||||||
|
assert (x_vector - x_vector2).sum() == 0.0
|
||||||
|
|
||||||
|
# compute x_vector from a list of wav files.
|
||||||
|
x_vector3 = manager.compute_x_vector_from_clip([sample_wav_path, sample_wav_path2])
|
||||||
|
x_vector3 = torch.FloatTensor(x_vector3)
|
||||||
|
assert x_vector3.shape[0] == 256
|
||||||
|
assert (x_vector - x_vector3).sum() != 0.0
|
||||||
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def test_speakers_file_processing():
|
def test_speakers_file_processing():
|
||||||
manager = SpeakerManager(x_vectors_file_path=x_vectors_file_path)
|
manager = SpeakerManager(x_vectors_file_path=x_vectors_file_path)
|
||||||
|
|
Loading…
Reference in New Issue