mirror of https://github.com/coqui-ai/TTS.git
update speaker encoder config.json, for compatibility with the TTS model
This commit is contained in:
parent
bc09ca8111
commit
ac85ccae99
|
@ -1,24 +1,30 @@
|
||||||
|
|
||||||
{
|
{
|
||||||
"run_name": "libritts_360-half",
|
"run_name": "libritts_100+360-angleproto",
|
||||||
"run_description": "train speaker encoder for libritts 360",
|
"run_description": "train speaker encoder for libritts 100 and 360",
|
||||||
"audio": {
|
"audio":{
|
||||||
// Audio processing parameters
|
// Audio processing parameters
|
||||||
"num_mels": 40, // size of the mel spec frame.
|
"num_mels": 80, // size of the mel spec frame.
|
||||||
"num_freq": 1025, // number of stft frequency levels. Size of the linear spectogram frame.
|
"num_freq": 1024, // number of stft frequency levels. Size of the linear spectogram frame.
|
||||||
"sample_rate": 16000, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
|
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
|
||||||
"frame_length_ms": 50, // stft window length in ms.
|
"win_length": 1024, // stft window length in ms.
|
||||||
"frame_shift_ms": 12.5, // stft window hop-lengh in ms.
|
"hop_length": 256, // stft window hop-lengh in ms.
|
||||||
"preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
|
||||||
"min_level_db": -100, // normalization range
|
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
|
||||||
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
"preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
||||||
|
"min_level_db": -100, // normalization range
|
||||||
|
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
||||||
|
"power": 1.5, // value to sharpen wav signals after GL algorithm.
|
||||||
|
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
|
||||||
// Normalization parameters
|
// Normalization parameters
|
||||||
"signal_norm": true, // normalize the spec values in range [0, 1]
|
"signal_norm": true, // normalize the spec values in range [0, 1]
|
||||||
"symmetric_norm": true, // move normalization to range [-1, 1]
|
"symmetric_norm": true, // move normalization to range [-1, 1]
|
||||||
"max_norm": 4, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
"max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
||||||
"clip_norm": true, // clip normalized values into the range.
|
"clip_norm": true, // clip normalized values into the range.
|
||||||
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
||||||
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
|
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
|
||||||
"do_trim_silence": false // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
"do_trim_silence": false, // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
||||||
|
"trim_db": 60 // threshold for timming silence. Set this according to your dataset.
|
||||||
},
|
},
|
||||||
"reinit_layers": [],
|
"reinit_layers": [],
|
||||||
"loss": "angleproto", // "ge2e" to use Generalized End-to-End loss and "angleproto" to use Angular Prototypical loss (new SOTA)
|
"loss": "angleproto", // "ge2e" to use Generalized End-to-End loss and "angleproto" to use Angular Prototypical loss (new SOTA)
|
||||||
|
@ -34,10 +40,9 @@
|
||||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||||
"save_step": 1000, // Number of training steps expected to save traning stats and checkpoints.
|
"save_step": 1000, // Number of training steps expected to save traning stats and checkpoints.
|
||||||
"print_step": 1, // Number of steps to log traning on console.
|
"print_step": 1, // Number of steps to log traning on console.
|
||||||
"output_path": "/media/erogol/data_ssd/Models/libri_tts/speaker_encoder/", // DATASET-RELATED: output path for all training outputs.
|
"output_path": "../../checkpoints/libri_tts/speaker_encoder/", // DATASET-RELATED: output path for all training outputs.
|
||||||
"num_loader_workers": 0, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
|
||||||
"model": {
|
"model": {
|
||||||
"input_dim": 40,
|
"input_dim": 80, // input_dim == num_mels
|
||||||
"proj_dim": 128,
|
"proj_dim": 128,
|
||||||
"lstm_dim": 384,
|
"lstm_dim": 384,
|
||||||
"num_lstm_layers": 3
|
"num_lstm_layers": 3
|
||||||
|
@ -46,13 +51,13 @@
|
||||||
[
|
[
|
||||||
{
|
{
|
||||||
"name": "libri_tts",
|
"name": "libri_tts",
|
||||||
"path": "/home/erogol/Data/Libri-TTS/train-clean-360/",
|
"path": "../../datasets/LibriTTS/train-clean-360/",
|
||||||
"meta_file_train": null,
|
"meta_file_train": null,
|
||||||
"meta_file_val": null
|
"meta_file_val": null
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "libri_tts",
|
"name": "libri_tts",
|
||||||
"path": "/home/erogol/Data/Libri-TTS/train-clean-100/",
|
"path": "../../datasets/LibriTTS/train-clean-100/",
|
||||||
"meta_file_train": null,
|
"meta_file_train": null,
|
||||||
"meta_file_val": null
|
"meta_file_val": null
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue