mirror of https://github.com/coqui-ai/TTS.git
loading last checkpoint/best_model works, deleting last best models options added, loading last best_loss added
This commit is contained in:
parent
a1e595790d
commit
af46727517
|
@ -538,8 +538,16 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
num_params = count_parameters(model)
|
||||
print("\n > Model has {} parameters".format(num_params), flush=True)
|
||||
|
||||
if 'best_loss' not in locals():
|
||||
if args.restore_step == 0 or not args.best_path:
|
||||
best_loss = float('inf')
|
||||
print(" > Starting with inf best loss.")
|
||||
else:
|
||||
print(args.best_path)
|
||||
best_loss = torch.load(args.best_path,
|
||||
map_location='cpu')['model_loss']
|
||||
print(f" > Starting with loaded last best loss {best_loss}.")
|
||||
keep_best = c.get('keep_best', False)
|
||||
keep_after = c.get('keep_after', 10000) # void if keep_best False
|
||||
|
||||
# define dataloaders
|
||||
train_loader = setup_loader(ap, 1, is_val=False, verbose=True)
|
||||
|
@ -549,7 +557,8 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
model = data_depended_init(train_loader, model)
|
||||
for epoch in range(0, c.epochs):
|
||||
c_logger.print_epoch_start(epoch, c.epochs)
|
||||
train_avg_loss_dict, global_step = train(train_loader, model, criterion, optimizer,
|
||||
train_avg_loss_dict, global_step = train(train_loader, model,
|
||||
criterion, optimizer,
|
||||
scheduler, ap, global_step,
|
||||
epoch)
|
||||
eval_avg_loss_dict = evaluate(eval_loader, model, criterion, ap,
|
||||
|
@ -558,8 +567,9 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
target_loss = train_avg_loss_dict['avg_loss']
|
||||
if c.run_eval:
|
||||
target_loss = eval_avg_loss_dict['avg_loss']
|
||||
best_loss = save_best_model(target_loss, best_loss, model, optimizer, global_step, epoch, c.r,
|
||||
OUT_PATH)
|
||||
best_loss = save_best_model(target_loss, best_loss, model, optimizer,
|
||||
global_step, epoch, c.r, OUT_PATH,
|
||||
keep_best=keep_best, keep_after=keep_after)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -502,8 +502,16 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
num_params = count_parameters(model)
|
||||
print("\n > Model has {} parameters".format(num_params), flush=True)
|
||||
|
||||
if 'best_loss' not in locals():
|
||||
if args.restore_step == 0 or not args.best_path:
|
||||
best_loss = float('inf')
|
||||
print(" > Starting with inf best loss.")
|
||||
else:
|
||||
print(args.best_path)
|
||||
best_loss = torch.load(args.best_path,
|
||||
map_location='cpu')['model_loss']
|
||||
print(f" > Starting with loaded last best loss {best_loss}.")
|
||||
keep_best = c.get('keep_best', False)
|
||||
keep_after = c.get('keep_after', 10000) # void if keep_best False
|
||||
|
||||
# define dataloaders
|
||||
train_loader = setup_loader(ap, 1, is_val=False, verbose=True)
|
||||
|
@ -522,8 +530,8 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
if c.run_eval:
|
||||
target_loss = eval_avg_loss_dict['avg_loss']
|
||||
best_loss = save_best_model(target_loss, best_loss, model, optimizer,
|
||||
global_step, epoch, c.r,
|
||||
OUT_PATH)
|
||||
global_step, epoch, c.r, OUT_PATH,
|
||||
keep_best=keep_best, keep_after=keep_after)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -581,8 +581,16 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
num_params = count_parameters(model)
|
||||
print("\n > Model has {} parameters".format(num_params), flush=True)
|
||||
|
||||
if 'best_loss' not in locals():
|
||||
if args.restore_step == 0 or not args.best_path:
|
||||
best_loss = float('inf')
|
||||
print(" > Starting with inf best loss.")
|
||||
else:
|
||||
print(args.best_path)
|
||||
best_loss = torch.load(args.best_path,
|
||||
map_location='cpu')['model_loss']
|
||||
print(f" > Starting with loaded last best loss {best_loss}.")
|
||||
keep_best = c.get('keep_best', False)
|
||||
keep_after = c.get('keep_after', 10000) # void if keep_best False
|
||||
|
||||
# define data loaders
|
||||
train_loader = setup_loader(ap,
|
||||
|
@ -634,6 +642,8 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
epoch,
|
||||
c.r,
|
||||
OUT_PATH,
|
||||
keep_best=keep_best,
|
||||
keep_after=keep_after,
|
||||
scaler=scaler.state_dict() if c.mixed_precision else None
|
||||
)
|
||||
|
||||
|
|
|
@ -545,8 +545,16 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
num_params = count_parameters(model_disc)
|
||||
print(" > Discriminator has {} parameters".format(num_params), flush=True)
|
||||
|
||||
if 'best_loss' not in locals():
|
||||
if args.restore_step == 0 or not args.best_path:
|
||||
best_loss = float('inf')
|
||||
print(" > Starting with inf best loss.")
|
||||
else:
|
||||
print(args.best_path)
|
||||
best_loss = torch.load(args.best_path,
|
||||
map_location='cpu')['model_loss']
|
||||
print(f" > Starting with loaded last best loss {best_loss}.")
|
||||
keep_best = c.get('keep_best', False)
|
||||
keep_after = c.get('keep_after', 10000) # void if keep_best False
|
||||
|
||||
global_step = args.restore_step
|
||||
for epoch in range(0, c.epochs):
|
||||
|
@ -571,7 +579,10 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
global_step,
|
||||
epoch,
|
||||
OUT_PATH,
|
||||
model_losses=eval_avg_loss_dict)
|
||||
keep_best=keep_best,
|
||||
keep_after=keep_after,
|
||||
model_losses=eval_avg_loss_dict,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -393,8 +393,16 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
num_params = count_parameters(model)
|
||||
print(" > WaveGrad has {} parameters".format(num_params), flush=True)
|
||||
|
||||
if 'best_loss' not in locals():
|
||||
if args.restore_step == 0 or not args.best_path:
|
||||
best_loss = float('inf')
|
||||
print(" > Starting with inf best loss.")
|
||||
else:
|
||||
print(args.best_path)
|
||||
best_loss = torch.load(args.best_path,
|
||||
map_location='cpu')['model_loss']
|
||||
print(f" > Starting with loaded last best loss {best_loss}.")
|
||||
keep_best = c.get('keep_best', False)
|
||||
keep_after = c.get('keep_after', 10000) # void if keep_best False
|
||||
|
||||
global_step = args.restore_step
|
||||
for epoch in range(0, c.epochs):
|
||||
|
@ -416,6 +424,8 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
global_step,
|
||||
epoch,
|
||||
OUT_PATH,
|
||||
keep_best=keep_best,
|
||||
keep_after=keep_after,
|
||||
model_losses=eval_avg_loss_dict,
|
||||
scaler=scaler.state_dict() if c.mixed_precision else None
|
||||
)
|
||||
|
|
|
@ -416,8 +416,16 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
num_parameters = count_parameters(model_wavernn)
|
||||
print(" > Model has {} parameters".format(num_parameters), flush=True)
|
||||
|
||||
if "best_loss" not in locals():
|
||||
best_loss = float("inf")
|
||||
if args.restore_step == 0 or not args.best_path:
|
||||
best_loss = float('inf')
|
||||
print(" > Starting with inf best loss.")
|
||||
else:
|
||||
print(args.best_path)
|
||||
best_loss = torch.load(args.best_path,
|
||||
map_location='cpu')['model_loss']
|
||||
print(f" > Starting with loaded last best loss {best_loss}.")
|
||||
keep_best = c.get('keep_best', False)
|
||||
keep_after = c.get('keep_after', 10000) # void if keep_best False
|
||||
|
||||
global_step = args.restore_step
|
||||
for epoch in range(0, c.epochs):
|
||||
|
@ -440,6 +448,8 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
global_step,
|
||||
epoch,
|
||||
OUT_PATH,
|
||||
keep_best=keep_best,
|
||||
keep_after=keep_after,
|
||||
model_losses=eval_avg_loss_dict,
|
||||
scaler=scaler.state_dict() if c.mixed_precision else None
|
||||
)
|
||||
|
|
|
@ -121,6 +121,8 @@
|
|||
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
|
||||
"save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
|
|
|
@ -93,6 +93,8 @@
|
|||
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
|
||||
"save_step": 5000, // Number of training steps expected to save traninpg stats and checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
"apex_amp_level": null,
|
||||
|
||||
|
|
|
@ -105,6 +105,8 @@
|
|||
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
|
||||
"save_step": 5000, // Number of training steps expected to save traninpg stats and checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
|
|
|
@ -121,6 +121,8 @@
|
|||
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
|
||||
"save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
|
|
|
@ -109,6 +109,8 @@
|
|||
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
|
||||
"save_step": 5000, // Number of training steps expected to save traninpg stats and checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.:set n
|
||||
"mixed_precision": false,
|
||||
|
||||
|
|
|
@ -43,6 +43,11 @@ def parse_arguments(argv):
|
|||
type=str,
|
||||
help="Model file to be restored. Use to finetune a model.",
|
||||
default="")
|
||||
parser.add_argument(
|
||||
"--best_path",
|
||||
type=str,
|
||||
help="Best model file to be used for extracting best loss.",
|
||||
default="")
|
||||
parser.add_argument(
|
||||
"--config_path",
|
||||
type=str,
|
||||
|
@ -67,11 +72,11 @@ def parse_arguments(argv):
|
|||
return parser.parse_args()
|
||||
|
||||
|
||||
def get_last_checkpoint(path):
|
||||
"""Get latest checkpoint from a list of filenames.
|
||||
def get_last_models(path):
|
||||
"""Get latest checkpoint or/and best model in path.
|
||||
|
||||
It is based on globbing for `*.pth.tar` and the RegEx
|
||||
`checkpoint_([0-9]+)`.
|
||||
`(checkpoint|best_model)_([0-9]+)`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
@ -81,7 +86,7 @@ def get_last_checkpoint(path):
|
|||
Raises
|
||||
------
|
||||
ValueError
|
||||
If no checkpoint files are found.
|
||||
If no checkpoint or best_model files are found.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -89,22 +94,37 @@ def get_last_checkpoint(path):
|
|||
Last checkpoint filename.
|
||||
|
||||
"""
|
||||
last_checkpoint_num = 0
|
||||
last_checkpoint = None
|
||||
filenames = glob.glob(
|
||||
os.path.join(path, "/*.pth.tar"))
|
||||
for filename in filenames:
|
||||
file_names = glob.glob(os.path.join(path, "*.pth.tar"))
|
||||
last_models = {}
|
||||
last_model_nums = {}
|
||||
for key in ['checkpoint', 'best_model']:
|
||||
last_model_num = 0
|
||||
last_model = None
|
||||
for file_name in file_names:
|
||||
try:
|
||||
checkpoint_num = int(
|
||||
re.search(r"checkpoint_([0-9]+)", filename).groups()[0])
|
||||
if checkpoint_num > last_checkpoint_num:
|
||||
last_checkpoint_num = checkpoint_num
|
||||
last_checkpoint = filename
|
||||
model_num = int(re.search(
|
||||
f"{key}_([0-9]+)", file_name).groups()[0])
|
||||
if model_num > last_model_num:
|
||||
last_model_num = model_num
|
||||
last_model = file_name
|
||||
except AttributeError: # if there's no match in the filename
|
||||
pass
|
||||
if last_checkpoint is None:
|
||||
raise ValueError(f"No checkpoints in {path}!")
|
||||
return last_checkpoint
|
||||
continue
|
||||
last_models[key] = last_model
|
||||
last_model_nums[key] = last_model_num
|
||||
|
||||
# check what models were found
|
||||
if not last_models:
|
||||
raise ValueError(f"No models found in continue path {path}!")
|
||||
elif 'checkpoint' not in last_models: # no checkpoint just best model
|
||||
last_models['checkpoint'] = last_models['best_model']
|
||||
elif 'best_model' not in last_models: # no best model
|
||||
# this shouldn't happen, but let's handle it just in case
|
||||
last_models['best_model'] = None
|
||||
# finally check if last best model is more recent than checkpoint
|
||||
elif last_model_nums['best_model'] > last_model_nums['checkpoint']:
|
||||
last_models['checkpoint'] = last_models['best_model']
|
||||
|
||||
return last_models['checkpoint'], last_models['best_model']
|
||||
|
||||
|
||||
def process_args(args, model_type):
|
||||
|
@ -143,15 +163,12 @@ def process_args(args, model_type):
|
|||
Class that does the TensorBoard loggind.
|
||||
|
||||
"""
|
||||
if args.continue_path != "":
|
||||
if args.continue_path:
|
||||
args.output_path = args.continue_path
|
||||
args.config_path = os.path.join(args.continue_path, "config.json")
|
||||
list_of_files = glob.glob(
|
||||
os.path.join(args.continue_path, "*.pth.tar")
|
||||
) # * means all if need specific format then *.csv
|
||||
args.restore_path = max(list_of_files, key=os.path.getctime)
|
||||
# checkpoint number based continuing
|
||||
# args.restore_path = get_last_checkpoint(args.continue_path)
|
||||
args.restore_path, best_model = get_last_models(args.continue_path)
|
||||
if not args.best_path:
|
||||
args.best_path = best_model
|
||||
print(f" > Training continues for {args.restore_path}")
|
||||
|
||||
# setup output paths and read configs
|
||||
|
@ -178,7 +195,7 @@ def process_args(args, model_type):
|
|||
print(" > Mixed precision mode is ON")
|
||||
|
||||
out_path = args.continue_path
|
||||
if args.continue_path == "":
|
||||
if not out_path:
|
||||
out_path = create_experiment_folder(c.output_path, c.run_name,
|
||||
args.debug)
|
||||
|
||||
|
|
|
@ -138,6 +138,8 @@
|
|||
"print_eval": false, // If True, it prints loss values for each step in eval run.
|
||||
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
|
|
|
@ -128,6 +128,8 @@
|
|||
"print_eval": false, // If True, it prints loss values for each step in eval run.
|
||||
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
|
|
|
@ -141,6 +141,8 @@
|
|||
"print_eval": false, // If True, it prints loss values for each step in eval run.
|
||||
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
|
|
|
@ -130,6 +130,8 @@
|
|||
"print_eval": false, // If True, it prints loss values for each step in eval run.
|
||||
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
|
|
|
@ -124,6 +124,8 @@
|
|||
"print_eval": false, // If True, it prints loss values for each step in eval run.
|
||||
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
|
|
|
@ -103,6 +103,8 @@
|
|||
"print_eval": false, // If True, it prints loss values for each step in eval run.
|
||||
"save_step": 5000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
|
||||
"tb_model_param_stats": true, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
|
|
|
@ -89,6 +89,8 @@
|
|||
"print_eval": false, // If True, it prints loss values for each step in eval run.
|
||||
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import os
|
||||
import glob
|
||||
import torch
|
||||
import datetime
|
||||
import pickle as pickle_tts
|
||||
|
@ -61,12 +62,13 @@ def save_checkpoint(model, optimizer, scheduler, model_disc, optimizer_disc,
|
|||
scheduler_disc, current_step, epoch, checkpoint_path, **kwargs)
|
||||
|
||||
|
||||
def save_best_model(target_loss, best_loss, model, optimizer, scheduler,
|
||||
def save_best_model(current_loss, best_loss, model, optimizer, scheduler,
|
||||
model_disc, optimizer_disc, scheduler_disc, current_step,
|
||||
epoch, output_folder, **kwargs):
|
||||
if target_loss < best_loss:
|
||||
file_name = 'best_model.pth.tar'
|
||||
checkpoint_path = os.path.join(output_folder, file_name)
|
||||
epoch, out_path, keep_best=False, keep_after=10000,
|
||||
**kwargs):
|
||||
if current_loss < best_loss:
|
||||
best_model_name = f'best_model_{current_step}.pth.tar'
|
||||
checkpoint_path = os.path.join(out_path, best_model_name)
|
||||
print(" > BEST MODEL : {}".format(checkpoint_path))
|
||||
save_model(model,
|
||||
optimizer,
|
||||
|
@ -77,7 +79,21 @@ def save_best_model(target_loss, best_loss, model, optimizer, scheduler,
|
|||
current_step,
|
||||
epoch,
|
||||
checkpoint_path,
|
||||
model_loss=target_loss,
|
||||
model_loss=current_loss,
|
||||
**kwargs)
|
||||
best_loss = target_loss
|
||||
# only delete previous if current is saved successfully
|
||||
if not keep_best or (current_step < keep_after):
|
||||
model_names = glob.glob(
|
||||
os.path.join(out_path, 'best_model*.pth.tar'))
|
||||
for model_name in model_names:
|
||||
if os.path.basename(model_name) == best_model_name:
|
||||
continue
|
||||
os.remove(model_name)
|
||||
# create symlink to best model for convinience
|
||||
link_name = 'best_model.pth.tar'
|
||||
link_path = os.path.join(out_path, link_name)
|
||||
if os.path.islink(link_path) or os.path.isfile(link_path):
|
||||
os.remove(link_path)
|
||||
os.symlink(best_model_name, os.path.join(out_path, link_name))
|
||||
best_loss = current_loss
|
||||
return best_loss
|
||||
|
|
Loading…
Reference in New Issue