mirror of https://github.com/coqui-ai/TTS.git
config update
This commit is contained in:
parent
1b68d3cb4e
commit
c6f2382962
4
.compute
4
.compute
|
@ -3,5 +3,5 @@ ls ${SHARED_DIR}/data/
|
|||
pip3 install https://download.pytorch.org/whl/cu100/torch-1.0.1.post2-cp36-cp36m-linux_x86_64.whl
|
||||
yes | apt-get install espeak
|
||||
python3 setup.py develop
|
||||
# python3 distribute.py --config_path config_cluster.json --data_path ${SHARED_DIR}/data/Blizzard/Nancy/ --restore_path ${USER_DIR}/best_model.pth.tar
|
||||
python3 distribute.py --config_path config_cluster.json --data_path ${SHARED_DIR}/data/Blizzard/Nancy/
|
||||
python3 distribute.py --config_path config_cluster.json --data_path ${SHARED_DIR}/data/Blizzard/Nancy/ --restore_path ${USER_DIR}/best_model_4258.pth.tar
|
||||
# python3 distribute.py --config_path config_cluster.json --data_path ${SHARED_DIR}/data/Blizzard/Nancy/
|
||||
|
|
|
@ -55,7 +55,7 @@
|
|||
"meta_file_val": "prompts_val.data", // DATASET-RELATED: metafile for evaluation dataloader.
|
||||
"dataset": "nancy", // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py
|
||||
"min_seq_len": 0, // DATASET-RELATED: minimum text length to use in training
|
||||
"max_seq_len": 1000, // DATASET-RELATED: maximum text length
|
||||
"max_seq_len": 50, // DATASET-RELATED: maximum text length
|
||||
"output_path": "../keep/", // DATASET-RELATED: output path for all training outputs.
|
||||
"num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
||||
"num_val_loader_workers": 4, // number of evaluation data loader processes.
|
||||
|
|
Loading…
Reference in New Issue