Update demo

This commit is contained in:
Edresson Casanova 2023-11-24 10:22:12 -03:00
parent 626d9e16fb
commit fa9bb26ebb
3 changed files with 112 additions and 90 deletions

View File

@ -8,8 +8,6 @@ from tqdm import tqdm
import torch
import torchaudio
from torchaudio.backend.sox_io_backend import load as torchaudio_sox_load
from torchaudio.backend.soundfile_backend import load as torchaudio_soundfile_load
# torch.set_num_threads(1)
from TTS.tts.layers.xtts.tokenizer import multilingual_cleaners
@ -45,7 +43,7 @@ def list_files(basePath, validExts=None, contains=None):
audioPath = os.path.join(rootDir, filename)
yield audioPath
def format_audio_list(audio_files, target_language="en", out_path=None, buffer=0.5, eval_percentage=0.15, speaker_name="coqui", gradio_progress=None):
def format_audio_list(audio_files, target_language="en", out_path=None, buffer=0.2, eval_percentage=0.15, speaker_name="coqui", gradio_progress=None):
# make sure that ooutput file exists
os.makedirs(out_path, exist_ok=True)
@ -121,10 +119,10 @@ def format_audio_list(audio_files, target_language="en", out_path=None, buffer=0
audio = wav[int(sr*sentence_start):int(sr*word_end)].unsqueeze(0)
# if the audio is too short ignore it (i.e < 0.33 seconds)
if audio.size(-1) >= sr/3:
torchaudio.backend.sox_io_backend.save(
absoulte_path,
torchaudio.save(absoulte_path,
audio,
sr
sr,
backend="sox",
)
else:
continue

View File

@ -159,5 +159,9 @@ def train_gpt(language, num_epochs, batch_size, train_csv, eval_csv, output_path
)
trainer.fit()
# get the longest text audio file to use as speaker reference
samples_len = [len(item["text"].split(" ")) for item in train_samples]
longest_text_idx = samples_len.index(max(samples_len))
speaker_ref = train_samples[longest_text_idx]["audio_file"]
return XTTS_CONFIG_FILE, XTTS_CHECKPOINT, TOKENIZER_FILE, trainer.output_path, train_samples[0]["audio_file"]
return XTTS_CONFIG_FILE, XTTS_CHECKPOINT, TOKENIZER_FILE, trainer.output_path, speaker_ref

View File

@ -18,31 +18,32 @@ from TTS.tts.models.xtts import Xtts
PORT = 5003
XTTS_MODEL = None
def load_model(xtts_checkpoint, xtts_config, xtts_vocab):
global XTTS_MODEL
config = XttsConfig()
config.load_json(xtts_config)
model = Xtts.init_from_config(config)
XTTS_MODEL = Xtts.init_from_config(config)
print("Loading XTTS model! ")
model.load_checkpoint(config, checkpoint_path=xtts_checkpoint, vocab_path=xtts_vocab, use_deepspeed=False)
XTTS_MODEL.load_checkpoint(config, checkpoint_path=xtts_checkpoint, vocab_path=xtts_vocab, use_deepspeed=False)
if torch.cuda.is_available():
model.cuda()
return model
XTTS_MODEL.cuda()
def run_tts(lang, tts_text, xtts_checkpoint, xtts_config, xtts_vocab, speaker_audio_file):
# ToDo: add the load in other function to fast inference
model = load_model(xtts_checkpoint, xtts_config, xtts_vocab)
gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(audio_path=speaker_audio_file, gpt_cond_len=model.config.gpt_cond_len, max_ref_length=model.config.max_ref_len, sound_norm_refs=model.config.sound_norm_refs)
speaker_embedding
out = model.inference(
print("Model Loaded!")
return "Model Loaded!"
def run_tts(lang, tts_text, speaker_audio_file):
gpt_cond_latent, speaker_embedding = XTTS_MODEL.get_conditioning_latents(audio_path=speaker_audio_file, gpt_cond_len=XTTS_MODEL.config.gpt_cond_len, max_ref_length=XTTS_MODEL.config.max_ref_len, sound_norm_refs=XTTS_MODEL.config.sound_norm_refs)
out = XTTS_MODEL.inference(
text=tts_text,
language=lang,
gpt_cond_latent=gpt_cond_latent,
speaker_embedding=speaker_embedding,
temperature=model.config.temperature, # Add custom parameters here
length_penalty=model.config.length_penalty,
repetition_penalty=model.config.repetition_penalty,
top_k=model.config.top_k,
top_p=model.config.top_p,
temperature=XTTS_MODEL.config.temperature, # Add custom parameters here
length_penalty=XTTS_MODEL.config.length_penalty,
repetition_penalty=XTTS_MODEL.config.repetition_penalty,
top_k=XTTS_MODEL.config.top_k,
top_p=XTTS_MODEL.config.top_p,
)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
@ -95,12 +96,19 @@ def read_logs():
with gr.Blocks() as demo:
# state_vars = gr.State()
with gr.Tab("Data processing"):
upload_file = gr.Audio(
sources="upload",
label="Select here the audio files that you want to use for XTTS trainining !",
type="filepath",
with gr.Tab("Data processing"):
out_path = gr.Textbox(
label="Output path (where data and checkpoints will be saved):",
value="/tmp/xtts_ft/"
)
# upload_file = gr.Audio(
# sources="upload",
# label="Select here the audio files that you want to use for XTTS trainining !",
# type="filepath",
# )
upload_file = gr.File(
file_count="multiple",
label="Select here the audio files that you want to use for XTTS trainining (Supported formats: wav, mp3, and flac)",
)
lang = gr.Dropdown(
label="Dataset Language",
@ -135,18 +143,18 @@ with gr.Blocks() as demo:
prompt_compute_btn = gr.Button(value="Step 1 - Create dataset.")
def preprocess_dataset(audio_path, language, progress=gr.Progress(track_tqdm=True)):
# create a temp directory to save the dataset
out_path = tempfile.TemporaryDirectory().name
def preprocess_dataset(audio_path, language, out_path, progress=gr.Progress(track_tqdm=True)):
out_path = os.path.join(out_path, "dataset")
os.makedirs(out_path, exist_ok=True)
if audio_path is None:
# ToDo: raise an error
pass
else:
train_meta, eval_meta = format_audio_list([audio_path], target_language=language, out_path=out_path, gradio_progress=progress)
train_meta, eval_meta = format_audio_list(audio_path, target_language=language, out_path=out_path, gradio_progress=progress)
print("Dataset Processed!")
return "Dataset Processed!", train_meta, eval_meta
with gr.Tab("Fine-tuning XTTS"):
with gr.Tab("Fine-tuning XTTS Encoder"):
train_csv = gr.Textbox(
label="Train CSV:",
)
@ -158,7 +166,7 @@ with gr.Blocks() as demo:
minimum=1,
maximum=100,
step=1,
value=2,# 15
value=10,
)
batch_size = gr.Slider(
label="batch_size",
@ -177,7 +185,7 @@ with gr.Blocks() as demo:
demo.load(read_logs, None, logs_tts_train, every=1)
train_btn = gr.Button(value="Step 2 - Run the training")
def train_model(language, train_csv, eval_csv, num_epochs, batch_size, output_path="./", progress=gr.Progress(track_tqdm=True)):
def train_model(language, train_csv, eval_csv, num_epochs, batch_size, output_path, progress=gr.Progress(track_tqdm=True)):
# train_csv = '/tmp/tmprh4k_vou/metadata_train.csv'
# eval_csv = '/tmp/tmprh4k_vou/metadata_eval.csv'
@ -187,67 +195,73 @@ with gr.Blocks() as demo:
os.system(f"cp {vocab_file} {exp_path}")
ft_xtts_checkpoint = os.path.join(exp_path, "best_model.pth")
# state_vars["config_path"] = config_path
# state_vars["original_xtts_checkpoint"] = original_xtts_checkpoint
# state_vars["vocab_file"] = vocab_file
# state_vars["ft_xtts_checkpoint"] = ft_xtts_checkpoint
# state_vars["speaker_audio_file"] = speaker_wav
print("Model training done!")
return "Model training done!", config_path, vocab_file, ft_xtts_checkpoint, speaker_wav
with gr.Tab("Inference"):
xtts_checkpoint = gr.Textbox(
label="XTTS checkpoint path:",
value="",
)
xtts_config = gr.Textbox(
label="XTTS config path:",
value="",
)
xtts_vocab = gr.Textbox(
label="XTTS config path:",
value="",
)
speaker_reference_audio = gr.Textbox(
label="Speaker reference audio:",
value="",
)
tts_language = gr.Dropdown(
label="Language",
value="en",
choices=[
"en",
"es",
"fr",
"de",
"it",
"pt",
"pl",
"tr",
"ru",
"nl",
"cs",
"ar",
"zh",
"hu",
"ko",
"ja",
]
)
tts_text = gr.Textbox(
label="Input Text.",
value="This model sounds really good and above all, it's reasonably fast.",
)
tts_btn = gr.Button(value="Step 3 - Inference XTTS model")
with gr.Row():
with gr.Column() as col1:
xtts_checkpoint = gr.Textbox(
label="XTTS checkpoint path:",
value="",
)
xtts_config = gr.Textbox(
label="XTTS config path:",
value="",
)
xtts_vocab = gr.Textbox(
label="XTTS config path:",
value="",
)
progress_load = gr.Label(
label="Progress:"
)
load_btn = gr.Button(value="Step 3 - Load Fine tuned XTTS model")
tts_output_audio = gr.Audio(label="Generated Audio.")
reference_audio = gr.Audio(label="Reference audio used.")
with gr.Column() as col2:
speaker_reference_audio = gr.Textbox(
label="Speaker reference audio:",
value="",
)
tts_language = gr.Dropdown(
label="Language",
value="en",
choices=[
"en",
"es",
"fr",
"de",
"it",
"pt",
"pl",
"tr",
"ru",
"nl",
"cs",
"ar",
"zh",
"hu",
"ko",
"ja",
]
)
tts_text = gr.Textbox(
label="Input Text.",
value="This model sounds really good and above all, it's reasonably fast.",
)
tts_btn = gr.Button(value="Step 4 - Inference")
with gr.Column() as col3:
tts_output_audio = gr.Audio(label="Generated Audio.")
reference_audio = gr.Audio(label="Reference audio used.")
prompt_compute_btn.click(
fn=preprocess_dataset,
inputs=[
upload_file,
lang,
out_path,
],
outputs=[
progress_data,
@ -255,7 +269,6 @@ with gr.Blocks() as demo:
eval_csv,
],
)
train_btn.click(
@ -266,19 +279,26 @@ with gr.Blocks() as demo:
eval_csv,
num_epochs,
batch_size,
out_path,
],
outputs=[progress_train, xtts_config, xtts_vocab, xtts_checkpoint, speaker_reference_audio],
)
load_btn.click(
fn=load_model,
inputs=[
xtts_checkpoint,
xtts_config,
xtts_vocab
],
outputs=[progress_load],
)
tts_btn.click(
fn=run_tts,
inputs=[
tts_language,
tts_text,
xtts_checkpoint,
xtts_config,
xtts_vocab,
speaker_reference_audio,
],
outputs=[tts_output_audio, reference_audio],