coqui-tts/TTS/bin/compute_embeddings.py

107 lines
4.2 KiB
Python

import argparse
import os
from argparse import RawTextHelpFormatter
import torch
from tqdm import tqdm
from TTS.config import load_config
from TTS.tts.datasets import load_tts_samples
from TTS.tts.utils.managers import EmbeddingManager, save_file
parser = argparse.ArgumentParser(
description="""Compute embedding vectors for each wav file in a dataset.\n\n"""
"""
Example runs:
python TTS/bin/compute_embeddings.py speaker_encoder_model.pth speaker_encoder_config.json dataset_config.json
""",
formatter_class=RawTextHelpFormatter,
)
parser.add_argument("model_path", type=str, help="Path to model checkpoint file.")
parser.add_argument("config_path", type=str, help="Path to model config file.")
parser.add_argument("config_dataset_path", type=str, help="Path to dataset config file.")
parser.add_argument("--output_path", type=str, help="Path for output `pth` or `json` file.", default="speakers.pth")
parser.add_argument("--old_file", type=str, help="Previous embedding file to only compute new audios.", default=None)
parser.add_argument("--disable_cuda", type=bool, help="Flag to disable cuda.", default=False)
parser.add_argument("--no_eval", type=bool, help="Do not compute eval?. Default False", default=False)
parser.add_argument(
"--use_predicted_label", type=bool, help="If True and predicted label is available with will use it.", default=False
)
args = parser.parse_args()
use_cuda = torch.cuda.is_available() and not args.disable_cuda
c_dataset = load_config(args.config_dataset_path)
meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=not args.no_eval)
if meta_data_eval is None:
wav_files = meta_data_train
else:
wav_files = meta_data_train + meta_data_eval
encoder_manager = EmbeddingManager(
encoder_model_path=args.model_path,
encoder_config_path=args.config_path,
embedding_file_path=args.old_file,
use_cuda=use_cuda,
)
print("Using CUDA?", use_cuda)
class_name_key = encoder_manager.encoder_config.class_name_key
# compute speaker embeddings
class_mapping = {}
for idx, wav_file in enumerate(tqdm(wav_files)):
if isinstance(wav_file, dict):
class_name = wav_file[class_name_key] if class_name_key in wav_file else None
wav_file = wav_file["audio_file"]
else:
class_name = None
wav_file_name = os.path.basename(wav_file)
if args.old_file is not None and wav_file_name in encoder_manager.clip_ids:
# get the embedding from the old file
embedd = encoder_manager.get_embedding_by_clip(wav_file_name)
else:
# extract the embedding
embedd = encoder_manager.compute_embedding_from_clip(wav_file)
if args.use_predicted_label:
map_classid_to_classname = getattr(encoder_manager.encoder_config, "map_classid_to_classname", None)
if encoder_manager.encoder_criterion is not None and map_classid_to_classname is not None:
embedding = torch.FloatTensor(embedd).unsqueeze(0)
if encoder_manager.use_cuda:
embedding = embedding.cuda()
class_id = encoder_manager.encoder_criterion.softmax.inference(embedding).item()
class_name = map_classid_to_classname[str(class_id)]
else:
raise RuntimeError(" [!] use_predicted_label is enable and predicted_labels is not available !!")
# create class_mapping if target dataset is defined
class_mapping[wav_file_name] = {}
class_mapping[wav_file_name]["name"] = class_name
class_mapping[wav_file_name]["embedding"] = embedd
if args.old_file:
# merge the embeddings dict
class_mapping = {**encoder_manager.embeddings, **class_mapping}
if class_mapping:
# save class_mapping if target dataset is defined
if ".json" not in args.output_path or ".pth" not in args.output_path:
if class_name_key == "speaker_name":
mapping_file_path = os.path.join(args.output_path, "speakers.pth")
else:
mapping_file_path = os.path.join(args.output_path, "emotions.pth")
else:
mapping_file_path = args.output_path
if os.path.dirname(mapping_file_path) != "":
os.makedirs(os.path.dirname(mapping_file_path), exist_ok=True)
save_file(class_mapping, mapping_file_path)
print("Embeddings saved at:", mapping_file_path)