mirror of https://github.com/coqui-ai/TTS.git
109 lines
2.8 KiB
Python
109 lines
2.8 KiB
Python
import librosa
|
|
import numpy as np
|
|
from scipy import signal
|
|
|
|
_mel_basis = None
|
|
|
|
|
|
def save_wav(wav, path):
|
|
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
|
|
librosa.output.write_wav(path, wav.astype(np.int16), c.sample_rate)
|
|
|
|
|
|
def _linear_to_mel(spectrogram):
|
|
global _mel_basis
|
|
if _mel_basis is None:
|
|
_mel_basis = _build_mel_basis()
|
|
return np.dot(_mel_basis, spectrogram)
|
|
|
|
|
|
def _build_mel_basis():
|
|
n_fft = (c.num_freq - 1) * 2
|
|
return librosa.filters.mel(c.sample_rate, n_fft, n_mels=c.num_mels)
|
|
|
|
|
|
def _normalize(S):
|
|
return np.clip((S - c.min_level_db) / -c.min_level_db, 0, 1)
|
|
|
|
|
|
def _denormalize(S):
|
|
return (np.clip(S, 0, 1) * -c.min_level_db) + c.min_level_db
|
|
|
|
|
|
def _stft_parameters():
|
|
n_fft = (c.num_freq - 1) * 2
|
|
hop_length = int(c.frame_shift_ms / 1000 * c.sample_rate)
|
|
win_length = int(c.frame_length_ms / 1000 * c.sample_rate)
|
|
return n_fft, hop_length, win_length
|
|
|
|
|
|
def _amp_to_db(x):
|
|
return 20 * np.log10(np.maximum(1e-5, x))
|
|
|
|
|
|
def _db_to_amp(x):
|
|
return np.power(10.0, x * 0.05)
|
|
|
|
|
|
def preemphasis(x):
|
|
return signal.lfilter([1, -c.preemphasis], [1], x)
|
|
|
|
|
|
def inv_preemphasis(x):
|
|
return signal.lfilter([1], [1, -c.preemphasis], x)
|
|
|
|
|
|
def spectrogram(y):
|
|
D = _stft(preemphasis(y))
|
|
S = _amp_to_db(np.abs(D)) - c.ref_level_db
|
|
return _normalize(S)
|
|
|
|
|
|
def inv_spectrogram(spectrogram):
|
|
'''Converts spectrogram to waveform using librosa'''
|
|
|
|
S = _denormalize(spectrogram)
|
|
S = _db_to_amp(S + c.ref_level_db) # Convert back to linear
|
|
|
|
# Reconstruct phase
|
|
return inv_preemphasis(_griffin_lim(S ** c.power))
|
|
|
|
|
|
def _griffin_lim(S):
|
|
'''librosa implementation of Griffin-Lim
|
|
Based on https://github.com/librosa/librosa/issues/434
|
|
'''
|
|
angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
|
|
S_complex = np.abs(S).astype(np.complex)
|
|
y = _istft(S_complex * angles)
|
|
for i in range(c.griffin_lim_iters):
|
|
angles = np.exp(1j * np.angle(_stft(y)))
|
|
y = _istft(S_complex * angles)
|
|
return y
|
|
|
|
|
|
def _istft(y):
|
|
_, hop_length, win_length = _stft_parameters()
|
|
return librosa.istft(y, hop_length=hop_length, win_length=win_length)
|
|
|
|
|
|
def melspectrogram(y):
|
|
D = _stft(preemphasis(y))
|
|
S = _amp_to_db(_linear_to_mel(np.abs(D)))
|
|
return _normalize(S)
|
|
|
|
|
|
def _stft(y):
|
|
n_fft, hop_length, win_length = _stft_parameters()
|
|
return librosa.stft(y=y, n_fft=n_fft, hop_length=hop_length, win_length=win_length)
|
|
|
|
|
|
def find_endpoint(wav, threshold_db=-40, min_silence_sec=0.8):
|
|
window_length = int(c.sample_rate * min_silence_sec)
|
|
hop_length = int(window_length / 4)
|
|
threshold = _db_to_amp(threshold_db)
|
|
for x in range(hop_length, len(wav) - window_length, hop_length):
|
|
if np.max(wav[x:x + window_length]) < threshold:
|
|
return x + hop_length
|
|
return len(wav)
|