coqui-tts/README.md

424 lines
16 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

## 🐸Coqui TTS News
- 📣 Fork of the [original, unmaintained repository](https://github.com/coqui-ai/TTS). New PyPI package: [coqui-tts](https://pypi.org/project/coqui-tts)
- 📣 [OpenVoice](https://github.com/myshell-ai/OpenVoice) models now available for voice conversion.
- 📣 Prebuilt wheels are now also published for Mac and Windows (in addition to Linux as before) for easier installation across platforms.
- 📣 ⓍTTSv2 is here with 17 languages and better performance across the board. ⓍTTS can stream with <200ms latency.
- 📣 TTS fine-tuning code is out. Check the [example recipes](https://github.com/idiap/coqui-ai-TTS/tree/dev/recipes/ljspeech).
- 📣 [🐶Bark](https://github.com/suno-ai/bark) is now available for inference with unconstrained voice cloning. [Docs](https://coqui-tts.readthedocs.io/en/latest/models/bark.html)
- 📣 You can use [Fairseq models in ~1100 languages](https://github.com/facebookresearch/fairseq/tree/main/examples/mms) with 🐸TTS.
## <img src="https://raw.githubusercontent.com/idiap/coqui-ai-TTS/main/images/coqui-log-green-TTS.png" height="56"/>
**🐸TTS is a library for advanced Text-to-Speech generation.**
🚀 Pretrained models in +1100 languages.
🛠 Tools for training new models and fine-tuning existing models in any language.
📚 Utilities for dataset analysis and curation.
______________________________________________________________________
[![Discord](https://img.shields.io/discord/1037326658807533628?color=%239B59B6&label=chat%20on%20discord)](https://discord.gg/5eXr5seRrv)
[![License](<https://img.shields.io/badge/License-MPL%202.0-brightgreen.svg>)](https://opensource.org/licenses/MPL-2.0)
[![PyPI version](https://badge.fury.io/py/coqui-tts.svg)](https://badge.fury.io/py/coqui-tts)
[![Downloads](https://pepy.tech/badge/coqui-tts)](https://pepy.tech/project/coqui-tts)
[![DOI](https://zenodo.org/badge/265612440.svg)](https://zenodo.org/badge/latestdoi/265612440)
![GithubActions](https://github.com/idiap/coqui-ai-TTS/actions/workflows/tests.yml/badge.svg)
![GithubActions](https://github.com/idiap/coqui-ai-TTS/actions/workflows/docker.yaml/badge.svg)
![GithubActions](https://github.com/idiap/coqui-ai-TTS/actions/workflows/style_check.yml/badge.svg)
[![Docs](<https://readthedocs.org/projects/coqui-tts/badge/?version=latest&style=plastic>)](https://coqui-tts.readthedocs.io/en/latest/)
</div>
______________________________________________________________________
## 💬 Where to ask questions
Please use our dedicated channels for questions and discussion. Help is much more valuable if it's shared publicly so that more people can benefit from it.
| Type | Platforms |
| -------------------------------------------- | ----------------------------------- |
| 🚨 **Bug Reports, Feature Requests & Ideas** | [GitHub Issue Tracker] |
| 👩‍💻 **Usage Questions** | [GitHub Discussions] |
| 🗯 **General Discussion** | [GitHub Discussions] or [Discord] |
[github issue tracker]: https://github.com/idiap/coqui-ai-TTS/issues
[github discussions]: https://github.com/idiap/coqui-ai-TTS/discussions
[discord]: https://discord.gg/5eXr5seRrv
[Tutorials and Examples]: https://github.com/coqui-ai/TTS/wiki/TTS-Notebooks-and-Tutorials
The [issues](https://github.com/coqui-ai/TTS/issues) and
[discussions](https://github.com/coqui-ai/TTS/discussions) in the original
repository are also still a useful source of information.
## 🔗 Links and Resources
| Type | Links |
| ------------------------------- | --------------------------------------- |
| 💼 **Documentation** | [ReadTheDocs](https://coqui-tts.readthedocs.io/en/latest/)
| 💾 **Installation** | [TTS/README.md](https://github.com/idiap/coqui-ai-TTS/tree/dev#installation)|
| 👩‍💻 **Contributing** | [CONTRIBUTING.md](https://github.com/idiap/coqui-ai-TTS/blob/main/CONTRIBUTING.md)|
| 🚀 **Released Models** | [Standard models](https://github.com/idiap/coqui-ai-TTS/blob/dev/TTS/.models.json) and [Fairseq models in ~1100 languages](https://github.com/idiap/coqui-ai-TTS#example-text-to-speech-using-fairseq-models-in-1100-languages-)|
## Features
- High-performance Deep Learning models for Text2Speech tasks. See lists of models below.
- Fast and efficient model training.
- Detailed training logs on the terminal and Tensorboard.
- Support for Multi-speaker TTS.
- Efficient, flexible, lightweight but feature complete `Trainer API`.
- Released and ready-to-use models.
- Tools to curate Text2Speech datasets under```dataset_analysis```.
- Utilities to use and test your models.
- Modular (but not too much) code base enabling easy implementation of new ideas.
## Model Implementations
### Spectrogram models
- Tacotron: [paper](https://arxiv.org/abs/1703.10135)
- Tacotron2: [paper](https://arxiv.org/abs/1712.05884)
- Glow-TTS: [paper](https://arxiv.org/abs/2005.11129)
- Speedy-Speech: [paper](https://arxiv.org/abs/2008.03802)
- Align-TTS: [paper](https://arxiv.org/abs/2003.01950)
- FastPitch: [paper](https://arxiv.org/pdf/2006.06873.pdf)
- FastSpeech: [paper](https://arxiv.org/abs/1905.09263)
- FastSpeech2: [paper](https://arxiv.org/abs/2006.04558)
- SC-GlowTTS: [paper](https://arxiv.org/abs/2104.05557)
- Capacitron: [paper](https://arxiv.org/abs/1906.03402)
- OverFlow: [paper](https://arxiv.org/abs/2211.06892)
- Neural HMM TTS: [paper](https://arxiv.org/abs/2108.13320)
- Delightful TTS: [paper](https://arxiv.org/abs/2110.12612)
### End-to-End Models
- ⓍTTS: [blog](https://coqui.ai/blog/tts/open_xtts)
- VITS: [paper](https://arxiv.org/pdf/2106.06103)
- 🐸 YourTTS: [paper](https://arxiv.org/abs/2112.02418)
- 🐢 Tortoise: [orig. repo](https://github.com/neonbjb/tortoise-tts)
- 🐶 Bark: [orig. repo](https://github.com/suno-ai/bark)
### Attention Methods
- Guided Attention: [paper](https://arxiv.org/abs/1710.08969)
- Forward Backward Decoding: [paper](https://arxiv.org/abs/1907.09006)
- Graves Attention: [paper](https://arxiv.org/abs/1910.10288)
- Double Decoder Consistency: [blog](https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency/)
- Dynamic Convolutional Attention: [paper](https://arxiv.org/pdf/1910.10288.pdf)
- Alignment Network: [paper](https://arxiv.org/abs/2108.10447)
### Speaker Encoder
- GE2E: [paper](https://arxiv.org/abs/1710.10467)
- Angular Loss: [paper](https://arxiv.org/pdf/2003.11982.pdf)
### Vocoders
- MelGAN: [paper](https://arxiv.org/abs/1910.06711)
- MultiBandMelGAN: [paper](https://arxiv.org/abs/2005.05106)
- ParallelWaveGAN: [paper](https://arxiv.org/abs/1910.11480)
- GAN-TTS discriminators: [paper](https://arxiv.org/abs/1909.11646)
- WaveRNN: [origin](https://github.com/fatchord/WaveRNN/)
- WaveGrad: [paper](https://arxiv.org/abs/2009.00713)
- HiFiGAN: [paper](https://arxiv.org/abs/2010.05646)
- UnivNet: [paper](https://arxiv.org/abs/2106.07889)
### Voice Conversion
- FreeVC: [paper](https://arxiv.org/abs/2210.15418)
- OpenVoice: [technical report](https://arxiv.org/abs/2312.01479)
You can also help us implement more models.
## Installation
🐸TTS is tested on Ubuntu 22.04 with **python >= 3.9, < 3.13.**.
If you are only interested in [synthesizing speech](https://coqui-tts.readthedocs.io/en/latest/inference.html) with the released 🐸TTS models, installing from PyPI is the easiest option.
```bash
pip install coqui-tts
```
If you plan to code or train models, clone 🐸TTS and install it locally.
```bash
git clone https://github.com/idiap/coqui-ai-TTS
cd coqui-ai-TTS
pip install -e .
```
### Optional dependencies
The following extras allow the installation of optional dependencies:
| Name | Description |
|------|-------------|
| `all` | All optional dependencies |
| `notebooks` | Dependencies only used in notebooks |
| `server` | Dependencies to run the TTS server |
| `bn` | Bangla G2P |
| `ja` | Japanese G2P |
| `ko` | Korean G2P |
| `zh` | Chinese G2P |
| `languages` | All language-specific dependencies |
You can install extras with one of the following commands:
```bash
pip install coqui-tts[server,ja]
pip install -e .[server,ja]
```
### Platforms
If you are on Ubuntu (Debian), you can also run following commands for installation.
```bash
make system-deps # intended to be used on Ubuntu (Debian). Let us know if you have a different OS.
make install
```
If you are on Windows, 👑@GuyPaddock wrote installation instructions
[here](https://stackoverflow.com/questions/66726331/how-can-i-run-mozilla-tts-coqui-tts-training-with-cuda-on-a-windows-system)
(note that these are out of date, e.g. you need to have at least Python 3.9).
## Docker Image
You can also try TTS without install with the docker image.
Simply run the following command and you will be able to run TTS without installing it.
```bash
docker run --rm -it -p 5002:5002 --entrypoint /bin/bash ghcr.io/coqui-ai/tts-cpu
python3 TTS/server/server.py --list_models #To get the list of available models
python3 TTS/server/server.py --model_name tts_models/en/vctk/vits # To start a server
```
You can then enjoy the TTS server [here](http://[::1]:5002/)
More details about the docker images (like GPU support) can be found
[here](https://coqui-tts.readthedocs.io/en/latest/docker_images.html)
## Synthesizing speech by 🐸TTS
### 🐍 Python API
#### Running a multi-speaker and multi-lingual model
```python
import torch
from TTS.api import TTS
# Get device
device = "cuda" if torch.cuda.is_available() else "cpu"
# List available 🐸TTS models
print(TTS().list_models())
# Init TTS
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
# Run TTS
# ❗ Since this model is multi-lingual voice cloning model, we must set the target speaker_wav and language
# Text to speech list of amplitude values as output
wav = tts.tts(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en")
# Text to speech to a file
tts.tts_to_file(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav")
```
#### Running a single speaker model
```python
# Init TTS with the target model name
tts = TTS(model_name="tts_models/de/thorsten/tacotron2-DDC", progress_bar=False).to(device)
# Run TTS
tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path=OUTPUT_PATH)
# Example voice cloning with YourTTS in English, French and Portuguese
tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False).to(device)
tts.tts_to_file("This is voice cloning.", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav")
tts.tts_to_file("C'est le clonage de la voix.", speaker_wav="my/cloning/audio.wav", language="fr-fr", file_path="output.wav")
tts.tts_to_file("Isso é clonagem de voz.", speaker_wav="my/cloning/audio.wav", language="pt-br", file_path="output.wav")
```
#### Example voice conversion
Converting the voice in `source_wav` to the voice of `target_wav`
```python
tts = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False).to("cuda")
tts.voice_conversion_to_file(source_wav="my/source.wav", target_wav="my/target.wav", file_path="output.wav")
```
Other available voice conversion models:
- `voice_conversion_models/multilingual/multi-dataset/openvoice_v1`
- `voice_conversion_models/multilingual/multi-dataset/openvoice_v2`
#### Example voice cloning together with the default voice conversion model.
This way, you can clone voices by using any model in 🐸TTS. The FreeVC model is
used for voice conversion after synthesizing speech.
```python
tts = TTS("tts_models/de/thorsten/tacotron2-DDC")
tts.tts_with_vc_to_file(
"Wie sage ich auf Italienisch, dass ich dich liebe?",
speaker_wav="target/speaker.wav",
file_path="output.wav"
)
```
#### Example text to speech using **Fairseq models in ~1100 languages** 🤯.
For Fairseq models, use the following name format: `tts_models/<lang-iso_code>/fairseq/vits`.
You can find the language ISO codes [here](https://dl.fbaipublicfiles.com/mms/tts/all-tts-languages.html)
and learn about the Fairseq models [here](https://github.com/facebookresearch/fairseq/tree/main/examples/mms).
```python
# TTS with fairseq models
api = TTS("tts_models/deu/fairseq/vits")
api.tts_to_file(
"Wie sage ich auf Italienisch, dass ich dich liebe?",
file_path="output.wav"
)
```
### Command-line `tts`
<!-- begin-tts-readme -->
Synthesize speech on command line.
You can either use your trained model or choose a model from the provided list.
If you don't specify any models, then it uses LJSpeech based English model.
#### Single Speaker Models
- List provided models:
```
$ tts --list_models
```
- Get model info (for both tts_models and vocoder_models):
- Query by type/name:
The model_info_by_name uses the name as it from the --list_models.
```
$ tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>"
```
For example:
```
$ tts --model_info_by_name tts_models/tr/common-voice/glow-tts
$ tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2
```
- Query by type/idx:
The model_query_idx uses the corresponding idx from --list_models.
```
$ tts --model_info_by_idx "<model_type>/<model_query_idx>"
```
For example:
```
$ tts --model_info_by_idx tts_models/3
```
- Query info for model info by full name:
```
$ tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>"
```
- Run TTS with default models:
```
$ tts --text "Text for TTS" --out_path output/path/speech.wav
```
- Run TTS and pipe out the generated TTS wav file data:
```
$ tts --text "Text for TTS" --pipe_out --out_path output/path/speech.wav | aplay
```
- Run a TTS model with its default vocoder model:
```
$ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>" --out_path output/path/speech.wav
```
For example:
```
$ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --out_path output/path/speech.wav
```
- Run with specific TTS and vocoder models from the list:
```
$ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>" --vocoder_name "<model_type>/<language>/<dataset>/<model_name>" --out_path output/path/speech.wav
```
For example:
```
$ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --vocoder_name "vocoder_models/en/ljspeech/univnet" --out_path output/path/speech.wav
```
- Run your own TTS model (Using Griffin-Lim Vocoder):
```
$ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav
```
- Run your own TTS and Vocoder models:
```
$ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav
--vocoder_path path/to/vocoder.pth --vocoder_config_path path/to/vocoder_config.json
```
#### Multi-speaker Models
- List the available speakers and choose a <speaker_id> among them:
```
$ tts --model_name "<language>/<dataset>/<model_name>" --list_speaker_idxs
```
- Run the multi-speaker TTS model with the target speaker ID:
```
$ tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --speaker_idx <speaker_id>
```
- Run your own multi-speaker TTS model:
```
$ tts --text "Text for TTS" --out_path output/path/speech.wav --model_path path/to/model.pth --config_path path/to/config.json --speakers_file_path path/to/speaker.json --speaker_idx <speaker_id>
```
### Voice Conversion Models
```
$ tts --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --source_wav <path/to/speaker/wav> --target_wav <path/to/reference/wav>
```
<!-- end-tts-readme -->
## Directory Structure
```
|- notebooks/ (Jupyter Notebooks for model evaluation, parameter selection and data analysis.)
|- utils/ (common utilities.)
|- TTS
|- bin/ (folder for all the executables.)
|- train*.py (train your target model.)
|- ...
|- tts/ (text to speech models)
|- layers/ (model layer definitions)
|- models/ (model definitions)
|- utils/ (model specific utilities.)
|- speaker_encoder/ (Speaker Encoder models.)
|- (same)
|- vocoder/ (Vocoder models.)
|- (same)
|- vc/ (Voice conversion models.)
|- (same)
```