coqui-tts/TTS/tts/layers/glow_tts/duration_predictor.py

41 lines
1.3 KiB
Python

import torch
from torch import nn
from .normalization import LayerNorm
class DurationPredictor(nn.Module):
def __init__(self, in_channels, filter_channels, kernel_size, dropout_p):
super().__init__()
# class arguments
self.in_channels = in_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.dropout_p = dropout_p
# layers
self.drop = nn.Dropout(dropout_p)
self.conv_1 = nn.Conv1d(in_channels,
filter_channels,
kernel_size,
padding=kernel_size // 2)
self.norm_1 = LayerNorm(filter_channels)
self.conv_2 = nn.Conv1d(filter_channels,
filter_channels,
kernel_size,
padding=kernel_size // 2)
self.norm_2 = LayerNorm(filter_channels)
# output layer
self.proj = nn.Conv1d(filter_channels, 1, 1)
def forward(self, x, x_mask):
x = self.conv_1(x * x_mask)
x = torch.relu(x)
x = self.norm_1(x)
x = self.drop(x)
x = self.conv_2(x * x_mask)
x = torch.relu(x)
x = self.norm_2(x)
x = self.drop(x)
x = self.proj(x * x_mask)
return x * x_mask