mirror of https://github.com/coqui-ai/TTS.git
88 lines
2.8 KiB
Python
88 lines
2.8 KiB
Python
import os
|
|
|
|
from TTS.config.shared_configs import BaseAudioConfig
|
|
from TTS.trainer import Trainer, TrainingArgs
|
|
from TTS.tts.configs.shared_configs import BaseDatasetConfig
|
|
from TTS.tts.configs.tacotron2_config import Tacotron2Config
|
|
from TTS.tts.datasets import load_tts_samples
|
|
from TTS.tts.models.tacotron2 import Tacotron2
|
|
from TTS.tts.utils.speakers import SpeakerManager
|
|
from TTS.utils.audio import AudioProcessor
|
|
|
|
output_path = os.path.dirname(os.path.abspath(__file__))
|
|
dataset_config = BaseDatasetConfig(name="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/"))
|
|
|
|
audio_config = BaseAudioConfig(
|
|
sample_rate=22050,
|
|
resample=False, # Resample to 22050 Hz. It slows down training. Use `TTS/bin/resample.py` to pre-resample and set this False for faster training.
|
|
do_trim_silence=True,
|
|
trim_db=23.0,
|
|
signal_norm=False,
|
|
mel_fmin=0.0,
|
|
mel_fmax=8000,
|
|
spec_gain=1.0,
|
|
log_func="np.log",
|
|
preemphasis=0.0,
|
|
)
|
|
|
|
config = Tacotron2Config( # This is the config that is saved for the future use
|
|
audio=audio_config,
|
|
batch_size=32,
|
|
eval_batch_size=16,
|
|
num_loader_workers=4,
|
|
num_eval_loader_workers=4,
|
|
run_eval=True,
|
|
test_delay_epochs=-1,
|
|
r=2,
|
|
# gradual_training=[[0, 6, 48], [10000, 4, 32], [50000, 3, 32], [100000, 2, 32]],
|
|
double_decoder_consistency=False,
|
|
epochs=1000,
|
|
text_cleaner="phoneme_cleaners",
|
|
use_phonemes=True,
|
|
phoneme_language="en-us",
|
|
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
|
|
print_step=150,
|
|
print_eval=False,
|
|
mixed_precision=True,
|
|
sort_by_audio_len=True,
|
|
min_seq_len=14800,
|
|
max_seq_len=22050 * 10, # 44k is the original sampling rate before resampling, corresponds to 10 seconds of audio
|
|
output_path=output_path,
|
|
datasets=[dataset_config],
|
|
use_speaker_embedding=True, # set this to enable multi-sepeaker training
|
|
decoder_ssim_alpha=0.0, # disable ssim losses that causes NaN for some runs.
|
|
postnet_ssim_alpha=0.0,
|
|
postnet_diff_spec_alpha=0.0,
|
|
decoder_diff_spec_alpha=0.0,
|
|
attention_norm="softmax",
|
|
optimizer="Adam",
|
|
lr_scheduler=None,
|
|
lr=3e-5,
|
|
)
|
|
|
|
# init audio processor
|
|
ap = AudioProcessor(**config.audio.to_dict())
|
|
|
|
# load training samples
|
|
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
|
|
|
# init speaker manager for multi-speaker training
|
|
# it mainly handles speaker-id to speaker-name for the model and the data-loader
|
|
speaker_manager = SpeakerManager()
|
|
speaker_manager.set_speaker_ids_from_data(train_samples + eval_samples)
|
|
|
|
# init model
|
|
model = Tacotron2(config, speaker_manager)
|
|
|
|
# init the trainer and 🚀
|
|
trainer = Trainer(
|
|
TrainingArgs(),
|
|
config,
|
|
output_path,
|
|
model=model,
|
|
train_samples=train_samples,
|
|
eval_samples=eval_samples,
|
|
training_assets={"audio_processor": ap},
|
|
)
|
|
trainer.fit()
|