coqui-tts/notebooks/ExtractTTSpectrogram.ipynb

10 KiB

None <html lang="en"> <head> </head>

This is a notebook to generate mel-spectrograms from a TTS model to be used for WaveRNN training.

In [ ]:
TTS_PATH = "/home/erogol/projects/"
In [ ]:
%load_ext autoreload
%autoreload 2
import os
import sys
sys.path.append(TTS_PATH)
import torch
import importlib
import numpy as np
from tqdm import tqdm as tqdm
from torch.utils.data import DataLoader
from TTS.datasets.TTSDataset import MyDataset
from TTS.layers.losses import L1LossMasked
from TTS.utils.audio import AudioProcessor
from TTS.utils.visual import plot_spectrogram
from TTS.utils.generic_utils import load_config, setup_model, sequence_mask
from TTS.utils.text.symbols import symbols, phonemes

%matplotlib inline

import os
os.environ['CUDA_VISIBLE_DEVICES']='2'
In [ ]:
def set_filename(wav_path, out_path):
    wav_file = os.path.basename(wav_path)
    file_name = wav_file.split('.')[0]
    os.makedirs(os.path.join(out_path, "quant"), exist_ok=True)
    os.makedirs(os.path.join(out_path, "mel"), exist_ok=True)
    os.makedirs(os.path.join(out_path, "wav_gl"), exist_ok=True)
    wavq_path = os.path.join(out_path, "quant", file_name)
    mel_path = os.path.join(out_path, "mel", file_name)
    wav_path = os.path.join(out_path, "wav_gl", file_name)
    return file_name, wavq_path, mel_path, wav_path
In [ ]:
OUT_PATH = "/data/rw/pit/data/turkish-vocoder/"
DATA_PATH = "/data/rw/home/Turkish"
DATASET = "ljspeech"
METADATA_FILE = "metadata.txt"
CONFIG_PATH = "/data/rw/pit/keep/turkish-January-08-2020_01+56AM-ca5e133/config.json"
MODEL_FILE = "/data/rw/pit/keep/turkish-January-08-2020_01+56AM-ca5e133/checkpoint_255000.pth.tar"
BATCH_SIZE = 32

QUANTIZED_WAV = False
QUANTIZE_BIT = 9
DRY_RUN = False   # if False, does not generate output files, only computes loss and visuals.

use_cuda = torch.cuda.is_available()
print(" > CUDA enabled: ", use_cuda)

C = load_config(CONFIG_PATH)
ap = AudioProcessor(bits=QUANTIZE_BIT, **C.audio)
In [ ]:
# load the model
num_chars = len(phonemes) if C.use_phonemes else len(symbols)
# TODO: multiple speaker
model = setup_model(num_chars, num_speakers=0, c=C)
checkpoint = torch.load(MODEL_FILE)
model.load_state_dict(checkpoint['model'])
print(checkpoint['step'])
model.eval()
model.decoder.set_r(checkpoint['r'])
if use_cuda:
    model = model.cuda()
In [ ]:
preprocessor = importlib.import_module('TTS.datasets.preprocess')
preprocessor = getattr(preprocessor, DATASET.lower())
meta_data = preprocessor(DATA_PATH,METADATA_FILE)
dataset = MyDataset(checkpoint['r'], C.text_cleaner, ap, meta_data, use_phonemes=C.use_phonemes,  phoneme_cache_path=C.phoneme_cache_path, enable_eos_bos=C.enable_eos_bos_chars)
loader = DataLoader(dataset, batch_size=BATCH_SIZE, num_workers=4, collate_fn=dataset.collate_fn, shuffle=False, drop_last=False)

Generate model outputs

In [ ]:
import pickle

file_idxs = []
metadata = []
losses = []
postnet_losses = []
criterion = L1LossMasked()
with torch.no_grad():
    for data in tqdm(loader):
        # setup input data
        text_input = data[0]
        text_lengths = data[1]
        linear_input = data[3]
        mel_input = data[4]
        mel_lengths = data[5]
        stop_targets = data[6]
        item_idx = data[7]

        # dispatch data to GPU
        if use_cuda:
            text_input = text_input.cuda()
            text_lengths = text_lengths.cuda()
            mel_input = mel_input.cuda()
            mel_lengths = mel_lengths.cuda()

        mask = sequence_mask(text_lengths)
        mel_outputs, postnet_outputs, alignments, stop_tokens = model.forward(text_input, text_lengths, mel_input)
        
        # compute loss
        loss = criterion(mel_outputs, mel_input, mel_lengths)
        loss_postnet = criterion(postnet_outputs, mel_input, mel_lengths)
        losses.append(loss.item())
        postnet_losses.append(loss_postnet.item())

        # compute mel specs from linear spec if model is Tacotron
        if C.model == "Tacotron":
            mel_specs = []
            postnet_outputs = postnet_outputs.data.cpu().numpy()
            for b in range(postnet_outputs.shape[0]):
                postnet_output = postnet_outputs[b]
                mel_specs.append(torch.FloatTensor(ap.out_linear_to_mel(postnet_output.T).T).cuda())
            postnet_outputs = torch.stack(mel_specs)
        elif C.model == "Tacotron2":
            postnet_outputs = postnet_outputs.detach().cpu().numpy()
        alignments = alignments.detach().cpu().numpy()

        if not DRY_RUN:
            for idx in range(text_input.shape[0]):
                wav_file_path = item_idx[idx]
                wav = ap.load_wav(wav_file_path)
                file_name, wavq_path, mel_path, wav_path = set_filename(wav_file_path, OUT_PATH)
                file_idxs.append(file_name)

                # quantize and save wav
                if QUANTIZED_WAV:
                    wavq = ap.quantize(wav)
                    np.save(wavq_path, wavq)

                # save TTS mel
                mel = postnet_outputs[idx]
                mel_length = mel_lengths[idx]
                mel = mel[:mel_length, :].T
                np.save(mel_path, mel)

                metadata.append([wav_file_path, mel_path])

    # for wavernn
    if not DRY_RUN:
        pickle.dump(file_idxs, open(OUT_PATH+"/dataset_ids.pkl", "wb"))      
    
    # for pwgan
    with open(os.path.join(OUT_PATH, "metadata.txt"), "w") as f:
        for data in metadata:
            f.write(f"{data[0]}|{data[1]+'.npy'}\n")

    print(np.mean(losses))
    print(np.mean(postnet_losses))
In [ ]:
# for pwgan
with open(os.path.join(OUT_PATH, "metadata.txt"), "w") as f:
    for data in metadata:
        f.write(f"{data[0]}|{data[1]+'.npy'}\n")

Check model performance

In [ ]:
# plot posnet output
idx = 1
mel_example = postnet_outputs[idx]
plot_spectrogram(mel_example[:mel_lengths[idx], :], ap);
print(mel_example[:mel_lengths[1], :].shape)
In [ ]:
# plot decoder output
mel_example = mel_outputs[idx].data.cpu().numpy()
plot_spectrogram(mel_example[:mel_lengths[idx], :], ap);
print(mel_example[:mel_lengths[1], :].shape)
In [ ]:
# plot GT specgrogram
wav = ap.load_wav(item_idx[idx])
melt = ap.melspectrogram(wav)
print(melt.shape)
plot_spectrogram(melt.T, ap);
In [ ]:
# postnet, decoder diff
from matplotlib import pylab as plt
mel_diff = mel_outputs[idx] - postnet_outputs[idx]
plt.figure(figsize=(16, 10))
plt.imshow(abs(mel_diff.detach().cpu().numpy()[:mel_lengths[idx],:]).T,aspect="auto", origin="lower");
plt.colorbar()
plt.tight_layout()
In [ ]:
from matplotlib import pylab as plt
# mel = mel_poutputs[idx].detach().cpu().numpy()
mel = postnet_outputs[idx].detach().cpu().numpy()
mel_diff2 = melt.T - mel[:melt.shape[1]]
plt.figure(figsize=(16, 10))
plt.imshow(abs(mel_diff2).T,aspect="auto", origin="lower");
plt.colorbar()
plt.tight_layout()
</html>