mirror of https://github.com/coqui-ai/TTS.git
4.9 KiB
4.9 KiB
Tutorial For Nervous Beginners
Installation
User friendly installation. Recommended only for synthesizing voice.
$ pip install TTS
Developer friendly installation.
$ git clone https://github.com/coqui-ai/TTS
$ cd TTS
$ pip install -e .
Training a tts
Model
A breakdown of a simple script training a GlowTTS model on LJspeech dataset. See the comments for the explanation of each line.
Pure Python Way
import os
# GlowTTSConfig: all model related values for training, validating and testing.
from TTS.tts.configs import GlowTTSConfig
# BaseDatasetConfig: defines name, formatter and path of the dataset.
from TTS.tts.configs import BaseDatasetConfig
# init_training: Initialize and setup the training environment.
# Trainer: Where the ✨️ happens.
# TrainingArgs: Defines the set of arguments of the Trainer.
from TTS.trainer import init_training, Trainer, TrainingArgs
# we use the same path as this script as our training folder.
output_path = os.path.dirname(os.path.abspath(__file__))
# set LJSpeech as our target dataset and define its path so that the Trainer knows what data formatter it needs.
dataset_config = BaseDatasetConfig(name="ljspeech", meta_file_train="metadata.csv", path=os.path.join(output_path, "../LJSpeech-1.1/"))
# Configure the model. Every config class inherits the BaseTTSConfig to have all the fields defined for the Trainer.
config = GlowTTSConfig(
batch_size=32,
eval_batch_size=16,
num_loader_workers=4,
num_eval_loader_workers=4,
run_eval=True,
test_delay_epochs=-1,
epochs=1000,
text_cleaner="english_cleaners",
use_phonemes=False,
phoneme_language="en-us",
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
print_step=25,
print_eval=True,
mixed_precision=False,
output_path=output_path,
datasets=[dataset_config]
)
# Take the config and the default Trainer arguments, setup the training environment and override the existing
# config values from the terminal. So you can do the following.
# >>> python train.py --coqpit.batch_size 128
args, config, output_path, _, _, _= init_training(TrainingArgs(), config)
# Initiate the Trainer.
# Trainer provides a generic API to train all the 🐸TTS models with all its perks like mixed-precision training,
# distributed training etc.
trainer = Trainer(args, config, output_path)
# And kick it 🚀
trainer.fit()
CLI Way
We still support running training from CLI like in the old days. The same training can be started as follows.
-
Define your
config.json
{ "model": "glow_tts", "batch_size": 32, "eval_batch_size": 16, "num_loader_workers": 4, "num_eval_loader_workers": 4, "run_eval": true, "test_delay_epochs": -1, "epochs": 1000, "text_cleaner": "english_cleaners", "use_phonemes": false, "phoneme_language": "en-us", "phoneme_cache_path": "phoneme_cache", "print_step": 25, "print_eval": true, "mixed_precision": false, "output_path": "recipes/ljspeech/glow_tts/", "datasets":[{"name": "ljspeech", "meta_file_train":"metadata.csv", "path": "recipes/ljspeech/LJSpeech-1.1/"}] }
-
Start training.
$ CUDA_VISIBLE_DEVICES="0" python TTS/bin/train_tts.py --config_path config.json
Training a vocoder
Model
import os
from TTS.vocoder.configs import HifiganConfig
from TTS.trainer import init_training, Trainer, TrainingArgs
output_path = os.path.dirname(os.path.abspath(__file__))
config = HifiganConfig(
batch_size=32,
eval_batch_size=16,
num_loader_workers=4,
num_eval_loader_workers=4,
run_eval=True,
test_delay_epochs=-1,
epochs=1000,
seq_len=8192,
pad_short=2000,
use_noise_augment=True,
eval_split_size=10,
print_step=25,
print_eval=True,
mixed_precision=False,
lr_gen=1e-4,
lr_disc=1e-4,
# `vocoder` only needs a data path and they read recursively all the `.wav` files underneath.
data_path=os.path.join(output_path, "../LJSpeech-1.1/wavs/"),
output_path=output_path,
)
args, config, output_path, _, c_logger, tb_logger = init_training(TrainingArgs(), config)
trainer = Trainer(args, config, output_path, c_logger, tb_logger)
trainer.fit()
❗️ Note that you can also start the training run from CLI as the tts
model above.
Synthesizing Speech
You can run tts
and synthesize speech directly on the terminal.
$ tts -h # see the help
$ tts --list_models # list the available models.
You can call tts-server
to start a local demo server that you can open it on
your favorite web browser and 🗣️.
$ tts-server -h # see the help
$ tts-server --list_models # list the available models.