coqui-tts/notebooks/Benchmark-PWGAN.ipynb

19 KiB
Raw Blame History

None <html lang="en"> <head> </head>

This is to test TTS models with benchmark sentences for speech synthesis.

Before running this script please DON'T FORGET:

  • to set file paths.
  • to download related model files from TTS and PWGAN.
  • download or clone related repos, linked below.
  • setup the repositories. python setup.py install
  • to checkout right commit versions (given next to the model) of TTS and PWGAN.
  • to set the right paths in the cell below.

Repositories:

In [ ]:
%load_ext autoreload
%autoreload 2
import os
import sys
import io
import torch 
import time
import json
import yaml
import numpy as np
from collections import OrderedDict
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (16,5)

import librosa
import librosa.display

from TTS.models.tacotron import Tacotron 
from TTS.layers import *
from TTS.utils.data import *
from TTS.utils.audio import AudioProcessor
from TTS.utils.generic_utils import load_config, setup_model
from TTS.utils.text import text_to_sequence
from TTS.utils.synthesis import synthesis
from TTS.utils.visual import visualize

import IPython
from IPython.display import Audio

import os

# you may need to change this depending on your system
os.environ['CUDA_VISIBLE_DEVICES']='1'
%matplotlib inline
In [ ]:
def tts(model, text, CONFIG, use_cuda, ap, use_gl, figures=True):
    t_1 = time.time()
    waveform, alignment, mel_spec, mel_postnet_spec, stop_tokens = synthesis(model, text, CONFIG, use_cuda, ap, speaker_id, False, CONFIG.enable_eos_bos_chars)
    if CONFIG.model == "Tacotron" and not use_gl:
        # coorect the normalization differences b/w TTS and the Vocoder.
        mel_postnet_spec = ap.out_linear_to_mel(mel_postnet_spec.T).T
    mel_postnet_spec = ap._denormalize(mel_postnet_spec)
#     mel_postnet_spec = np.pad(mel_postnet_spec, pad_width=((2, 2), (0, 0)))
    print(mel_postnet_spec.shape)
    print("max- ", mel_postnet_spec.max(), " -- min- ", mel_postnet_spec.min())
    if not use_gl:
        waveform = vocoder_model.inference(torch.FloatTensor(ap_vocoder._normalize(mel_postnet_spec).T).unsqueeze(0), hop_size=ap_vocoder.hop_length)
#         waveform = waveform / abs(waveform).max() * 0.9
    if use_cuda:
        waveform = waveform.cpu()
    waveform = waveform.numpy()
    rtf = (time.time() - t_1) / (len(waveform) / ap.sample_rate)
    print(waveform.shape)
    print(" > Run-time: {}".format(time.time() - t_1))
    print(" > Real-time factor: {}".format(rtf))
    if figures:  
        visualize(alignment, mel_postnet_spec, stop_tokens, text, ap.hop_length, CONFIG, ap._denormalize(mel_spec))                                                                       
    IPython.display.display(Audio(waveform, rate=CONFIG.audio['sample_rate'], normalize=False))  
    os.makedirs(OUT_FOLDER, exist_ok=True)
    file_name = text.replace(" ", "_").replace(".","") + ".wav"
    out_path = os.path.join(OUT_FOLDER, file_name)
    ap.save_wav(waveform, out_path)
    return alignment, mel_postnet_spec, stop_tokens, waveform
In [ ]:
# Set constants
ROOT_PATH = '/home/erogol/Models/LJSpeech/ljspeech-bn-December-23-2019_08+34AM-ffea133/'
MODEL_PATH = ROOT_PATH + '/checkpoint_670000.pth.tar'
CONFIG_PATH = ROOT_PATH + '/config.json'
OUT_FOLDER = '/home/erogol/Dropbox/AudioSamples/benchmark_samples/'
CONFIG = load_config(CONFIG_PATH)
VOCODER_MODEL_PATH = "/home/erogol/Models/LJSpeech/pwgan-ljspeech/checkpoint-400000steps.pkl"
VOCODER_CONFIG_PATH = "/home/erogol/Models/LJSpeech/pwgan-ljspeech/config.yml"

# load PWGAN config
with open(VOCODER_CONFIG_PATH) as f:
    VOCODER_CONFIG = yaml.load(f, Loader=yaml.Loader)
    
# Run FLAGs
use_cuda = False
# Set some config fields manually for testing
CONFIG.windowing = True
CONFIG.use_forward_attn = True 
# Set the vocoder
use_gl = False # use GL if True
batched_wavernn = True    # use batched wavernn inference if True
In [ ]:
# LOAD TTS MODEL
from TTS.utils.text.symbols import make_symbols, symbols, phonemes

# multi speaker 
if CONFIG.use_speaker_embedding:
    speakers = json.load(open(f"{ROOT_PATH}/speakers.json", 'r'))
    speakers_idx_to_id = {v: k for k, v in speakers.items()}
else:
    speakers = []
    speaker_id = None

# if the vocabulary was passed, replace the default
if 'characters' in CONFIG.keys():
    symbols, phonemes = make_symbols(**CONFIG.characters)

# load the model
num_chars = len(phonemes) if CONFIG.use_phonemes else len(symbols)
model = setup_model(num_chars, len(speakers), CONFIG)

# load the audio processor
ap = AudioProcessor(**CONFIG.audio)         


# load model state
cp =  torch.load(MODEL_PATH, map_location=torch.device('cpu'))

# load the model
model.load_state_dict(cp['model'])
if use_cuda:
    model.cuda()
model.eval()
print(cp['step'])
print(cp['r'])

# set model stepsize
if 'r' in cp:
    model.decoder.set_r(cp['r'])
In [ ]:
# LOAD WAVERNN
if use_gl == False:
    from parallel_wavegan.models import ParallelWaveGANGenerator
    from parallel_wavegan.utils.audio import AudioProcessor as AudioProcessorVocoder
    
    vocoder_model = ParallelWaveGANGenerator(**VOCODER_CONFIG["generator_params"])
    vocoder_model.load_state_dict(torch.load(VOCODER_MODEL_PATH, map_location="cpu")["model"]["generator"])
    vocoder_model.remove_weight_norm()
    ap_vocoder = AudioProcessorVocoder(**VOCODER_CONFIG['audio'])    
    if use_cuda:
        vocoder_model.cuda()
    vocoder_model.eval();
In [ ]:
model.eval()
model.decoder.max_decoder_steps = 2000
model.decoder.prenet.eval()
speaker_id = None
sentence = '''A breeding jennet, lusty, young, and proud,'''
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence =  "Bill got in the habit of asking himself “Is that thought true?” and if he wasnt absolutely certain it was, he just let it go."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "The Commission also recommends"
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "As a result of these studies, the planning document submitted by the Secretary of the Treasury to the Bureau of the Budget on August thirty-one."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "The FBI now transmits information on all defectors, a category which would, of course, have included Oswald."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "they seem unduly restrictive in continuing to require some manifestation of animus against a Government official."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "and each agency given clear understanding of the assistance which the Secret Service expects."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)

Other examples

In [ ]:
sentence = "Be a voice, not an echo."  # 'echo' is not in training set. 
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "The human voice is the most perfect instrument of all."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "I'm sorry Dave. I'm afraid I can't do that."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "This cake is great. It's so delicious and moist."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Generative adversarial network or variational auto-encoder."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Scientists at the CERN laboratory say they have discovered a new particle."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Heres a way to measure the acute emotional intelligence that has never gone out of style."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "President Trump met with other leaders at the Group of 20 conference."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "The buses aren't the problem, they actually provide a solution."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Generative adversarial network or variational auto-encoder."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Basilar membrane and otolaryngology are not auto-correlations."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = " He has read the whole thing."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "He reads books."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Thisss isrealy awhsome."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "This is your internet browser, Firefox."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "This is your internet browser Firefox."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "The quick brown fox jumps over the lazy dog."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Does the quick brown fox jump over the lazy dog?"
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Eren, how are you?"
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)

Hard Sentences

In [ ]:
sentence = "Encouraged, he started with a minute a day."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "His meditation consisted of “body scanning” which involved focusing his mind and energy on each section of the body from head to toe ."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Recent research at Harvard has shown meditating for as little as 8 weeks can actually increase the grey matter in the parts of the brain responsible for emotional regulation and learning . "
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "If he decided to watch TV he really watched it."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Often we try to bring about change through sheer effort and we put all of our energy into a new initiative ."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
# for twb dataset
sentence = "In our preparation for Easter, God in his providence offers us each year the season of Lent as a sacramental sign of our conversion."
align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
</html>