mirror of https://github.com/coqui-ai/TTS.git
19 KiB
19 KiB
None
<html lang="en">
<head>
</head>
</html>
This is to test TTS models with benchmark sentences for speech synthesis.
Before running this script please DON'T FORGET:
- to set file paths.
- to download related model files from TTS and PWGAN.
- download or clone related repos, linked below.
- setup the repositories.
python setup.py install
- to checkout right commit versions (given next to the model) of TTS and PWGAN.
- to set the right paths in the cell below.
Repositories:
In [ ]:
%load_ext autoreload %autoreload 2 import os import sys import io import torch import time import json import yaml import numpy as np from collections import OrderedDict import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = (16,5) import librosa import librosa.display from TTS.models.tacotron import Tacotron from TTS.layers import * from TTS.utils.data import * from TTS.utils.audio import AudioProcessor from TTS.utils.generic_utils import load_config, setup_model from TTS.utils.text import text_to_sequence from TTS.utils.synthesis import synthesis from TTS.utils.visual import visualize import IPython from IPython.display import Audio import os # you may need to change this depending on your system os.environ['CUDA_VISIBLE_DEVICES']='1' %matplotlib inline
In [ ]:
def tts(model, text, CONFIG, use_cuda, ap, use_gl, figures=True): t_1 = time.time() waveform, alignment, mel_spec, mel_postnet_spec, stop_tokens = synthesis(model, text, CONFIG, use_cuda, ap, speaker_id, False, CONFIG.enable_eos_bos_chars) if CONFIG.model == "Tacotron" and not use_gl: # coorect the normalization differences b/w TTS and the Vocoder. mel_postnet_spec = ap.out_linear_to_mel(mel_postnet_spec.T).T mel_postnet_spec = ap._denormalize(mel_postnet_spec) # mel_postnet_spec = np.pad(mel_postnet_spec, pad_width=((2, 2), (0, 0))) print(mel_postnet_spec.shape) print("max- ", mel_postnet_spec.max(), " -- min- ", mel_postnet_spec.min()) if not use_gl: waveform = vocoder_model.inference(torch.FloatTensor(ap_vocoder._normalize(mel_postnet_spec).T).unsqueeze(0), hop_size=ap_vocoder.hop_length) # waveform = waveform / abs(waveform).max() * 0.9 if use_cuda: waveform = waveform.cpu() waveform = waveform.numpy() rtf = (time.time() - t_1) / (len(waveform) / ap.sample_rate) print(waveform.shape) print(" > Run-time: {}".format(time.time() - t_1)) print(" > Real-time factor: {}".format(rtf)) if figures: visualize(alignment, mel_postnet_spec, stop_tokens, text, ap.hop_length, CONFIG, ap._denormalize(mel_spec)) IPython.display.display(Audio(waveform, rate=CONFIG.audio['sample_rate'], normalize=False)) os.makedirs(OUT_FOLDER, exist_ok=True) file_name = text.replace(" ", "_").replace(".","") + ".wav" out_path = os.path.join(OUT_FOLDER, file_name) ap.save_wav(waveform, out_path) return alignment, mel_postnet_spec, stop_tokens, waveform
In [ ]:
# Set constants ROOT_PATH = '/home/erogol/Models/LJSpeech/ljspeech-bn-December-23-2019_08+34AM-ffea133/' MODEL_PATH = ROOT_PATH + '/checkpoint_670000.pth.tar' CONFIG_PATH = ROOT_PATH + '/config.json' OUT_FOLDER = '/home/erogol/Dropbox/AudioSamples/benchmark_samples/' CONFIG = load_config(CONFIG_PATH) VOCODER_MODEL_PATH = "/home/erogol/Models/LJSpeech/pwgan-ljspeech/checkpoint-400000steps.pkl" VOCODER_CONFIG_PATH = "/home/erogol/Models/LJSpeech/pwgan-ljspeech/config.yml" # load PWGAN config with open(VOCODER_CONFIG_PATH) as f: VOCODER_CONFIG = yaml.load(f, Loader=yaml.Loader) # Run FLAGs use_cuda = False # Set some config fields manually for testing CONFIG.windowing = True CONFIG.use_forward_attn = True # Set the vocoder use_gl = False # use GL if True batched_wavernn = True # use batched wavernn inference if True
In [ ]:
# LOAD TTS MODEL from TTS.utils.text.symbols import make_symbols, symbols, phonemes # multi speaker if CONFIG.use_speaker_embedding: speakers = json.load(open(f"{ROOT_PATH}/speakers.json", 'r')) speakers_idx_to_id = {v: k for k, v in speakers.items()} else: speakers = [] speaker_id = None # if the vocabulary was passed, replace the default if 'characters' in CONFIG.keys(): symbols, phonemes = make_symbols(**CONFIG.characters) # load the model num_chars = len(phonemes) if CONFIG.use_phonemes else len(symbols) model = setup_model(num_chars, len(speakers), CONFIG) # load the audio processor ap = AudioProcessor(**CONFIG.audio) # load model state cp = torch.load(MODEL_PATH, map_location=torch.device('cpu')) # load the model model.load_state_dict(cp['model']) if use_cuda: model.cuda() model.eval() print(cp['step']) print(cp['r']) # set model stepsize if 'r' in cp: model.decoder.set_r(cp['r'])
In [ ]:
# LOAD WAVERNN if use_gl == False: from parallel_wavegan.models import ParallelWaveGANGenerator from parallel_wavegan.utils.audio import AudioProcessor as AudioProcessorVocoder vocoder_model = ParallelWaveGANGenerator(**VOCODER_CONFIG["generator_params"]) vocoder_model.load_state_dict(torch.load(VOCODER_MODEL_PATH, map_location="cpu")["model"]["generator"]) vocoder_model.remove_weight_norm() ap_vocoder = AudioProcessorVocoder(**VOCODER_CONFIG['audio']) if use_cuda: vocoder_model.cuda() vocoder_model.eval();
Comparision with https://mycroft.ai/blog/available-voices/¶
In [ ]:
model.eval() model.decoder.max_decoder_steps = 2000 model.decoder.prenet.eval() speaker_id = None sentence = '''A breeding jennet, lusty, young, and proud,''' align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Bill got in the habit of asking himself “Is that thought true?” and if he wasn’t absolutely certain it was, he just let it go." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "The Commission also recommends" align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "As a result of these studies, the planning document submitted by the Secretary of the Treasury to the Bureau of the Budget on August thirty-one." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "The FBI now transmits information on all defectors, a category which would, of course, have included Oswald." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "they seem unduly restrictive in continuing to require some manifestation of animus against a Government official." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "and each agency given clear understanding of the assistance which the Secret Service expects." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
Other examples¶
In [ ]:
sentence = "Be a voice, not an echo." # 'echo' is not in training set. align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "The human voice is the most perfect instrument of all." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "I'm sorry Dave. I'm afraid I can't do that." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "This cake is great. It's so delicious and moist." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
Comparison with https://keithito.github.io/audio-samples/¶
In [ ]:
sentence = "Generative adversarial network or variational auto-encoder." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Scientists at the CERN laboratory say they have discovered a new particle." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Here’s a way to measure the acute emotional intelligence that has never gone out of style." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "President Trump met with other leaders at the Group of 20 conference." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "The buses aren't the problem, they actually provide a solution." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Generative adversarial network or variational auto-encoder." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Basilar membrane and otolaryngology are not auto-correlations." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = " He has read the whole thing." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "He reads books." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Thisss isrealy awhsome." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "This is your internet browser, Firefox." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "This is your internet browser Firefox." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "The quick brown fox jumps over the lazy dog." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Does the quick brown fox jump over the lazy dog?" align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Eren, how are you?" align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
Hard Sentences¶
In [ ]:
sentence = "Encouraged, he started with a minute a day." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "His meditation consisted of “body scanning” which involved focusing his mind and energy on each section of the body from head to toe ." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Recent research at Harvard has shown meditating for as little as 8 weeks can actually increase the grey matter in the parts of the brain responsible for emotional regulation and learning . " align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "If he decided to watch TV he really watched it." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Often we try to bring about change through sheer effort and we put all of our energy into a new initiative ." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
# for twb dataset sentence = "In our preparation for Easter, God in his providence offers us each year the season of Lent as a sacramental sign of our conversion." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)