mirror of https://github.com/coqui-ai/TTS.git
17 KiB
17 KiB
None
<html lang="en">
<head>
</head>
</html>
This is to test TTS models with benchmark sentences for speech synthesis.
Before running this script please DON'T FORGET:
- to set file paths.
- to download related model files from TTS and WaveRNN.
- to checkout right commit versions (given next to the model) of TTS and WaveRNN.
- to set the right paths in the cell below.
Repositories:
In [ ]:
TTS_PATH = "/home/erogol/projects/" WAVERNN_PATH ="/home/erogol/projects/"
In [ ]:
%load_ext autoreload %autoreload 2 import os import sys import io import torch import time import json import numpy as np from collections import OrderedDict from matplotlib import pylab as plt %pylab inline rcParams["figure.figsize"] = (16,5) # add libraries into environment sys.path.append(TTS_PATH) # set this if TTS is not installed globally sys.path.append(WAVERNN_PATH) # set this if TTS is not installed globally import librosa import librosa.display from TTS.models.tacotron import Tacotron from TTS.layers import * from TTS.utils.data import * from TTS.utils.audio import AudioProcessor from TTS.utils.generic_utils import load_config, setup_model from TTS.utils.text import text_to_sequence from TTS.utils.synthesis import synthesis from TTS.utils.visual import visualize import IPython from IPython.display import Audio import os os.environ['CUDA_VISIBLE_DEVICES']='1'
In [ ]:
def tts(model, text, CONFIG, use_cuda, ap, use_gl, figures=True): t_1 = time.time() waveform, alignment, mel_spec, mel_postnet_spec, stop_tokens = synthesis(model, text, CONFIG, use_cuda, ap, speaker_id, False, CONFIG.enable_eos_bos_chars) if CONFIG.model == "Tacotron" and not use_gl: # coorect the normalization differences b/w TTS and the Vocoder. mel_postnet_spec = ap.out_linear_to_mel(mel_postnet_spec.T).T mel_postnet_spec = ap._denormalize(mel_postnet_spec) mel_postnet_spec = ap_vocoder._normalize(mel_postnet_spec) if not use_gl: waveform = wavernn.generate(torch.FloatTensor(mel_postnet_spec.T).unsqueeze(0).cuda(), batched=batched_wavernn, target=8000, overlap=400) print(" > Run-time: {}".format(time.time() - t_1)) if figures: visualize(alignment, mel_postnet_spec, stop_tokens, text, ap.hop_length, CONFIG, mel_spec) IPython.display.display(Audio(waveform, rate=CONFIG.audio['sample_rate'])) os.makedirs(OUT_FOLDER, exist_ok=True) file_name = text.replace(" ", "_").replace(".","") + ".wav" out_path = os.path.join(OUT_FOLDER, file_name) ap.save_wav(waveform, out_path) return alignment, mel_postnet_spec, stop_tokens, waveform
In [ ]:
# Set constants ROOT_PATH = '/media/erogol/data_ssd/Models/libri_tts/5099/' MODEL_PATH = ROOT_PATH + '/best_model.pth.tar' CONFIG_PATH = ROOT_PATH + '/config.json' OUT_FOLDER = '/home/erogol/Dropbox/AudioSamples/benchmark_samples/' CONFIG = load_config(CONFIG_PATH) VOCODER_MODEL_PATH = "/media/erogol/data_ssd/Models/wavernn/ljspeech/mold_ljspeech_best_model/checkpoint_433000.pth.tar" VOCODER_CONFIG_PATH = "/media/erogol/data_ssd/Models/wavernn/ljspeech/mold_ljspeech_best_model/config.json" VOCODER_CONFIG = load_config(VOCODER_CONFIG_PATH) use_cuda = False # Set some config fields manually for testing # CONFIG.windowing = False # CONFIG.prenet_dropout = False # CONFIG.separate_stopnet = True CONFIG.use_forward_attn = True # CONFIG.forward_attn_mask = True # CONFIG.stopnet = True # Set the vocoder use_gl = False # use GL if True batched_wavernn = True # use batched wavernn inference if True
In [ ]:
# LOAD TTS MODEL from utils.text.symbols import symbols, phonemes # multi speaker if CONFIG.use_speaker_embedding: speakers = json.load(open(f"{ROOT_PATH}/speakers.json", 'r')) speakers_idx_to_id = {v: k for k, v in speakers.items()} else: speakers = [] speaker_id = None # load the model num_chars = len(phonemes) if CONFIG.use_phonemes else len(symbols) model = setup_model(num_chars, len(speakers), CONFIG) # load the audio processor ap = AudioProcessor(**CONFIG.audio) # load model state if use_cuda: cp = torch.load(MODEL_PATH) else: cp = torch.load(MODEL_PATH, map_location=lambda storage, loc: storage) # load the model model.load_state_dict(cp['model']) if use_cuda: model.cuda() model.eval() print(cp['step']) print(cp['r']) # set model stepsize if 'r' in cp: model.decoder.set_r(cp['r'])
In [ ]:
# LOAD WAVERNN if use_gl == False: from WaveRNN.models.wavernn import Model from WaveRNN.utils.audio import AudioProcessor as AudioProcessorVocoder bits = 10 ap_vocoder = AudioProcessorVocoder(**VOCODER_CONFIG.audio) wavernn = Model( rnn_dims=512, fc_dims=512, mode=VOCODER_CONFIG.mode, mulaw=VOCODER_CONFIG.mulaw, pad=VOCODER_CONFIG.pad, upsample_factors=VOCODER_CONFIG.upsample_factors, feat_dims=VOCODER_CONFIG.audio["num_mels"], compute_dims=128, res_out_dims=128, res_blocks=10, hop_length=ap_vocoder.hop_length, sample_rate=ap_vocoder.sample_rate, use_upsample_net = True, use_aux_net = True ).cuda() check = torch.load(VOCODER_MODEL_PATH) wavernn.load_state_dict(check['model'], strict=False) if use_cuda: wavernn.cuda() wavernn.eval(); print(check['step'])
Comparision with https://mycroft.ai/blog/available-voices/¶
In [ ]:
model.eval() model.decoder.max_decoder_steps = 2000 speaker_id = None sentence = "Bill got in the habit of asking himself “Is that thought true?” and if he wasn’t absolutely certain it was, he just let it go." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
model.eval() model.decoder.max_decoder_steps = 2000 sentence = "Bill got in the habit of asking himself “Is that thought true?” and if he wasn’t absolutely certain it was, he just let it go." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Be a voice, not an echo." # 'echo' is not in training set. align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "The human voice is the most perfect instrument of all." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "I'm sorry Dave. I'm afraid I can't do that." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "This cake is great. It's so delicious and moist." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
Comparison with https://keithito.github.io/audio-samples/¶
In [ ]:
sentence = "Generative adversarial network or variational auto-encoder." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Scientists at the CERN laboratory say they have discovered a new particle." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Here’s a way to measure the acute emotional intelligence that has never gone out of style." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "President Trump met with other leaders at the Group of 20 conference." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "The buses aren't the problem, they actually provide a solution." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Generative adversarial network or variational auto-encoder." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Basilar membrane and otolaryngology are not auto-correlations." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = " He has read the whole thing." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "He reads books." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Thisss isrealy awhsome." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "This is your internet browser, Firefox." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "This is your internet browser Firefox." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "The quick brown fox jumps over the lazy dog." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Does the quick brown fox jump over the lazy dog?" align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Eren, how are you?" align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
Hard Sentences¶
In [ ]:
sentence = "Encouraged, he started with a minute a day." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "His meditation consisted of “body scanning” which involved focusing his mind and energy on each section of the body from head to toe ." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Recent research at Harvard has shown meditating for as little as 8 weeks can actually increase the grey matter in the parts of the brain responsible for emotional regulation and learning . " align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "If he decided to watch TV he really watched it." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
sentence = "Often we try to bring about change through sheer effort and we put all of our energy into a new initiative ." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)
In [ ]:
# for twb dataset sentence = "In our preparation for Easter, God in his providence offers us each year the season of Lent as a sacramental sign of our conversion." align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)