mirror of https://github.com/coqui-ai/TTS.git
1.0 MiB
1.0 MiB
None
<html lang="en">
<head>
</head>
</html>
In [1]:
import os import sys import io import torch import numpy as np from collections import OrderedDict %pylab inline rcParams["figure.figsize"] = (16,5) import librosa import librosa.display from TTS.models.tacotron import Tacotron from TTS.layers import * from TTS.utils.data import * from TTS.utils.audio import AudioProcessor from TTS.utils.generic_utils import load_config from TTS.utils.text import text_to_sequence import IPython from IPython.display import Audio
Populating the interactive namespace from numpy and matplotlib
In [2]:
def create_speech(m, s): text_cleaner = [CONFIG.text_cleaner] seq = np.array(text_to_sequence(s, text_cleaner)) # mel = np.zeros([seq.shape[0], CONFIG.num_mels, 1], dtype=np.float32) if use_cuda: chars_var = torch.autograd.Variable(torch.from_numpy(seq), volatile=True).unsqueeze(0).cuda() # mel_var = torch.autograd.Variable(torch.from_numpy(mel).type(torch.cuda.FloatTensor), volatile=True).cuda() else: chars_var = torch.autograd.Variable(torch.from_numpy(seq), volatile=True).unsqueeze(0) # mel_var = torch.autograd.Variable(torch.from_numpy(mel).type(torch.FloatTensor), volatile=True) mel_out, linear_out, alignments = model.forward(chars_var) linear_out = linear_out[0].data.cpu().numpy() alignment = alignments[0].cpu().data.numpy() spec = ap._denormalize(linear_out) wav = ap.inv_spectrogram(linear_out.T) wav = wav[:ap.find_endpoint(wav)] out = io.BytesIO() ap.save_wav(wav, out) return wav, alignment, spec def visualize(alignment, spectrogram): label_fontsize = 16 figure(figsize=(16,16)) subplot(2,1,1) imshow(alignment.T, aspect="auto", origin="lower", interpolation=None) xlabel("Decoder timestamp", fontsize=label_fontsize) ylabel("Encoder timestamp", fontsize=label_fontsize) colorbar() subplot(2,1,2) librosa.display.specshow(spectrogram.T, sr=CONFIG.sample_rate, hop_length=hop_length, x_axis="time", y_axis="linear") xlabel("Time", fontsize=label_fontsize) ylabel("Hz", fontsize=label_fontsize) tight_layout() colorbar() def tts(model, text, figures=True): waveform, alignment, spectrogram = create_speech(model, text) if figures: visualize(alignment, spectrogram) IPython.display.display(Audio(waveform, rate=CONFIG.sample_rate))
In [3]:
MODEL_PATH = '../result/January-26-2018_02:44AM/checkpoint_1800.pth.tar' CONFIG_PATH = '../result/January-26-2018_02:44AM/config.json' OUT_FOLDER = '../result/January-26-2018_02:44AM/test/' CONFIG = load_config(CONFIG_PATH) use_cuda = False hop_length = 250
In [4]:
# load the model model = Tacotron(CONFIG.embedding_size, CONFIG.hidden_size, CONFIG.num_mels, CONFIG.num_freq, CONFIG.r) ap = AudioProcessor(CONFIG.sample_rate, CONFIG.num_mels, CONFIG.min_level_db, CONFIG.frame_shift_ms, CONFIG.frame_length_ms, CONFIG.preemphasis, CONFIG.ref_level_db, CONFIG.num_freq, CONFIG.power, griffin_lim_iters=80) if use_cuda: model = torch.nn.DataParallel(model.cuda()) else: cp = torch.load(MODEL_PATH, map_location=lambda storage, loc: storage) # remove DataPatallel wrapper new_state_dict = OrderedDict() for k, v in cp['model'].items(): name = k[7:] # remove `module.` new_state_dict[name] = v cp['model'] = new_state_dict
In [5]:
model.load_state_dict(cp['model']) # model.decoder.eval(); model.encoder.eval(); model.postnet.eval();
In [6]:
sentences = [ "I try to speak my friend.", "I speak more than binary any more.", "I try ti implement a new TTS system." ]
In [7]:
tts(model, sentences[2])
Warning! doesn't seems to be converged
Your browser does not support the audio element.
In [8]:
# os.makedirs(OUT_FOLDER, exist_ok=True)
In [9]:
# wav, alignments, spec = create_speech(model, sentences[1]) # out_path = os.path.join(OUT_FOLDER, 'speec_{}.wav'.format(1)) # with open(out_path, "wb") as f: # f.write(wav) # print(" > Speech saved : {}".format(out_path))
In [10]:
# import IPython # import glob # # wav_files = glob.glob(OUT_FOLDER+'/**/*.wav', recursive=True) # # assert len(wav_files) > 0 # # IPython.display.Audio(wav_files[1]) # IPython.display.display(IPython.display.Audio(wav, rate=CONFIG.sample_rate))
In [ ]: