coqui-tts/notebooks/ExtractTTSpectrogram.ipynb

11 KiB

None <html lang="en"> <head> </head>

This is a notebook to generate mel-spectrograms from a TTS model to be used in a Vocoder training.

In [ ]:
%load_ext autoreload
%autoreload 2
import os
import sys
import torch
import importlib
import numpy as np
from tqdm import tqdm as tqdm
from torch.utils.data import DataLoader
from TTS.tts.datasets.dataset import TTSDataset
from TTS.tts.layers.losses import L1LossMasked
from TTS.utils.audio import AudioProcessor
from TTS.config import load_config
from TTS.tts.utils.visual import plot_spectrogram
from TTS.tts.utils.helpers import sequence_mask
from TTS.tts.models import setup_model
from TTS.tts.utils.text.symbols import make_symbols, symbols, phonemes

%matplotlib inline

import os
os.environ['CUDA_VISIBLE_DEVICES']='2'
In [ ]:
def set_filename(wav_path, out_path):
    wav_file = os.path.basename(wav_path)
    file_name = wav_file.split('.')[0]
    os.makedirs(os.path.join(out_path, "quant"), exist_ok=True)
    os.makedirs(os.path.join(out_path, "mel"), exist_ok=True)
    os.makedirs(os.path.join(out_path, "wav_gl"), exist_ok=True)
    wavq_path = os.path.join(out_path, "quant", file_name)
    mel_path = os.path.join(out_path, "mel", file_name)
    wav_path = os.path.join(out_path, "wav_gl", file_name)
    return file_name, wavq_path, mel_path, wav_path
In [ ]:
OUT_PATH = "/home/ubuntu/TTS/recipes/ljspeech/LJSpeech-1.1/specs2/"
DATA_PATH = "/home/ubuntu/TTS/recipes/ljspeech/LJSpeech-1.1/"
DATASET = "ljspeech"
METADATA_FILE = "metadata.csv"
CONFIG_PATH = "/home/ubuntu/.local/share/tts/tts_models--en--ljspeech--tacotron2-DDC_ph/config.json"
MODEL_FILE = "/home/ubuntu/.local/share/tts/tts_models--en--ljspeech--tacotron2-DDC_ph/model_file.pth"
BATCH_SIZE = 32

QUANTIZED_WAV = False
QUANTIZE_BIT = None
DRY_RUN = False   # if False, does not generate output files, only computes loss and visuals.

use_cuda = torch.cuda.is_available()
print(" > CUDA enabled: ", use_cuda)

C = load_config(CONFIG_PATH)
C.audio['do_trim_silence'] = False  # IMPORTANT!!!!!!!!!!!!!!! disable to align mel specs with the wav files
ap = AudioProcessor(bits=QUANTIZE_BIT, **C.audio)
In [ ]:
print(C['r'])
# if the vocabulary was passed, replace the default
if 'characters' in C and C['characters']:
    symbols, phonemes = make_symbols(**C.characters)

# load the model
num_chars = len(phonemes) if C.use_phonemes else len(symbols)
# TODO: multiple speaker
model = setup_model(C)
model.load_checkpoint(C, MODEL_FILE, eval=True)
In [ ]:
preprocessor = importlib.import_module("TTS.tts.datasets.formatters")
preprocessor = getattr(preprocessor, DATASET.lower())
meta_data = preprocessor(DATA_PATH, METADATA_FILE)
dataset = TTSDataset(
    checkpoint["config"]["r"],
    C.text_cleaner,
    False,
    ap,
    meta_data,
    characters=C.get('characters', None),
    use_phonemes=C.use_phonemes,
    phoneme_cache_path=C.phoneme_cache_path,
    enable_eos_bos=C.enable_eos_bos_chars,
)
loader = DataLoader(
    dataset, batch_size=BATCH_SIZE, num_workers=4, collate_fn=dataset.collate_fn, shuffle=False, drop_last=False
)

Generate model outputs

In [ ]:
import pickle

file_idxs = []
metadata = []
losses = []
postnet_losses = []
criterion = L1LossMasked(seq_len_norm=C.seq_len_norm)
with torch.no_grad():
    for data in tqdm(loader):
        # setup input data
        text_input = data[0]
        text_lengths = data[1]
        linear_input = data[3]
        mel_input = data[4]
        mel_lengths = data[5]
        stop_targets = data[6]
        item_idx = data[7]

        # dispatch data to GPU
        if use_cuda:
            text_input = text_input.cuda()
            text_lengths = text_lengths.cuda()
            mel_input = mel_input.cuda()
            mel_lengths = mel_lengths.cuda()

        mask = sequence_mask(text_lengths)
        mel_outputs, postnet_outputs, alignments, stop_tokens = model.forward(text_input, text_lengths, mel_input)
        
        # compute loss
        loss = criterion(mel_outputs, mel_input, mel_lengths)
        loss_postnet = criterion(postnet_outputs, mel_input, mel_lengths)
        losses.append(loss.item())
        postnet_losses.append(loss_postnet.item())

        # compute mel specs from linear spec if model is Tacotron
        if C.model == "Tacotron":
            mel_specs = []
            postnet_outputs = postnet_outputs.data.cpu().numpy()
            for b in range(postnet_outputs.shape[0]):
                postnet_output = postnet_outputs[b]
                mel_specs.append(torch.FloatTensor(ap.out_linear_to_mel(postnet_output.T).T).cuda())
            postnet_outputs = torch.stack(mel_specs)
        elif C.model == "Tacotron2":
            postnet_outputs = postnet_outputs.detach().cpu().numpy()
        alignments = alignments.detach().cpu().numpy()

        if not DRY_RUN:
            for idx in range(text_input.shape[0]):
                wav_file_path = item_idx[idx]
                wav = ap.load_wav(wav_file_path)
                file_name, wavq_path, mel_path, wav_path = set_filename(wav_file_path, OUT_PATH)
                file_idxs.append(file_name)

                # quantize and save wav
                if QUANTIZED_WAV:
                    wavq = ap.quantize(wav)
                    np.save(wavq_path, wavq)

                # save TTS mel
                mel = postnet_outputs[idx]
                mel_length = mel_lengths[idx]
                mel = mel[:mel_length, :].T
                np.save(mel_path, mel)

                metadata.append([wav_file_path, mel_path])

    # for wavernn
    if not DRY_RUN:
        pickle.dump(file_idxs, open(OUT_PATH+"/dataset_ids.pkl", "wb"))      
    
    # for pwgan
    with open(os.path.join(OUT_PATH, "metadata.txt"), "w") as f:
        for data in metadata:
            f.write(f"{data[0]}|{data[1]+'.npy'}\n")

    print(np.mean(losses))
    print(np.mean(postnet_losses))
In [ ]:
# for pwgan
with open(os.path.join(OUT_PATH, "metadata.txt"), "w") as f:
    for data in metadata:
        f.write(f"{data[0]}|{data[1]+'.npy'}\n")

Sanity Check

In [ ]:
idx = 1
ap.melspectrogram(ap.load_wav(item_idx[idx])).shape
In [ ]:
import soundfile as sf
wav, sr = sf.read(item_idx[idx])
mel_postnet = postnet_outputs[idx][:mel_lengths[idx], :]
mel_decoder = mel_outputs[idx][:mel_lengths[idx], :].detach().cpu().numpy()
mel_truth = ap.melspectrogram(wav)
print(mel_truth.shape)
In [ ]:
# plot posnet output
print(mel_postnet[:mel_lengths[idx], :].shape)
plot_spectrogram(mel_postnet, ap)
In [ ]:
# plot decoder output
print(mel_decoder.shape)
plot_spectrogram(mel_decoder, ap)
In [ ]:
# plot GT specgrogram
print(mel_truth.shape)
plot_spectrogram(mel_truth.T, ap)
In [ ]:
# postnet, decoder diff
from matplotlib import pylab as plt
mel_diff = mel_decoder - mel_postnet
plt.figure(figsize=(16, 10))
plt.imshow(abs(mel_diff[:mel_lengths[idx],:]).T,aspect="auto", origin="lower");
plt.colorbar()
plt.tight_layout()
In [ ]:
# PLOT GT SPECTROGRAM diff
from matplotlib import pylab as plt
mel_diff2 = mel_truth.T - mel_decoder
plt.figure(figsize=(16, 10))
plt.imshow(abs(mel_diff2).T,aspect="auto", origin="lower");
plt.colorbar()
plt.tight_layout()
In [ ]:
# PLOT GT SPECTROGRAM diff
from matplotlib import pylab as plt
mel = postnet_outputs[idx]
mel_diff2 = mel_truth.T - mel[:mel_truth.shape[1]]
plt.figure(figsize=(16, 10))
plt.imshow(abs(mel_diff2).T,aspect="auto", origin="lower");
plt.colorbar()
plt.tight_layout()
In [ ]:
 
</html>