coqui-tts/notebooks/dataset_analysis/AnalyzeDataset.ipynb

428 lines
9.8 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"Collapsed": "false"
},
"outputs": [],
"source": [
"# TTS_PATH = \"/home/erogol/projects/\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"Collapsed": "false"
},
"outputs": [],
"source": [
"import os\n",
"import sys\n",
"import librosa\n",
"import numpy as np\n",
"import pandas as pd\n",
"from scipy.stats import norm\n",
"from tqdm import tqdm_notebook as tqdm\n",
"from multiprocessing import Pool\n",
"from matplotlib import pylab as plt\n",
"from collections import Counter\n",
"from TTS.config.shared_configs import BaseDatasetConfig\n",
"from TTS.tts.datasets import load_tts_samples\n",
"from TTS.tts.datasets.formatters import *\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"Collapsed": "false"
},
"outputs": [],
"source": [
"NUM_PROC = 8\n",
"DATASET_CONFIG = BaseDatasetConfig(\n",
" formatter=\"ljspeech\", meta_file_train=\"metadata.csv\", path=\"/absolute/path/to/your/dataset/\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def formatter(root_path, meta_file, **kwargs): # pylint: disable=unused-argument\n",
" txt_file = os.path.join(root_path, meta_file)\n",
" items = []\n",
" speaker_name = \"myspeaker\"\n",
" with open(txt_file, \"r\", encoding=\"utf-8\") as ttf:\n",
" for line in ttf:\n",
" cols = line.split(\"|\")\n",
" wav_file = os.path.join(root_path, \"wavs\", cols[0] + \".wav\") \n",
" text = cols[1]\n",
" items.append({\"text\": text, \"audio_file\": wav_file, \"speaker_name\": speaker_name, \"root_path\": root_path})\n",
" return items"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"Collapsed": "false"
},
"outputs": [],
"source": [
"# use your own preprocessor at this stage - TTS/datasets/proprocess.py\n",
"train_samples, eval_samples = load_tts_samples(DATASET_CONFIG, eval_split=True, formatter=formatter)\n",
"if eval_samples is not None:\n",
" items = train_samples + eval_samples\n",
"else:\n",
" items = train_samples\n",
"print(\" > Number of audio files: {}\".format(len(items)))\n",
"print(items[1])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"Collapsed": "false"
},
"outputs": [],
"source": [
"# check wavs if exist\n",
"wav_files = []\n",
"for item in items:\n",
" wav_file = item[\"audio_file\"].strip()\n",
" wav_files.append(wav_file)\n",
" if not os.path.exists(wav_file):\n",
" print(wav_file)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"Collapsed": "false"
},
"outputs": [],
"source": [
"# show duplicate items\n",
"c = Counter(wav_files)\n",
"print([item for item, count in c.items() if count > 1])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"item"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"Collapsed": "false"
},
"outputs": [],
"source": [
"def load_item(item):\n",
" text = item[\"text\"].strip()\n",
" file_name = item[\"audio_file\"].strip()\n",
" audio, sr = librosa.load(file_name, sr=None)\n",
" audio_len = len(audio) / sr\n",
" text_len = len(text)\n",
" return file_name, text, text_len, audio, audio_len\n",
"\n",
"# This will take a while depending on size of dataset\n",
"if NUM_PROC == 1:\n",
" data = []\n",
" for m in tqdm(items):\n",
" data += [load_item(m)]\n",
"else:\n",
" with Pool(8) as p:\n",
" data = list(tqdm(p.imap(load_item, items), total=len(items)))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"Collapsed": "false"
},
"outputs": [],
"source": [
"# count words in the dataset\n",
"w_count = Counter()\n",
"for item in tqdm(data):\n",
" text = item[1].lower().strip()\n",
" for word in text.split():\n",
" w_count[word] += 1\n",
"print(\" > Number of words: {}\".format(len(w_count)))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"Collapsed": "false"
},
"outputs": [],
"source": [
"text_vs_durs = {} # text length vs audio duration\n",
"text_len_counter = Counter() # number of sentences with the keyed length\n",
"for item in tqdm(data):\n",
" text = item[1].lower().strip()\n",
" text_len = len(text)\n",
" text_len_counter[text_len] += 1\n",
" audio_len = item[-1]\n",
" try:\n",
" text_vs_durs[text_len] += [audio_len]\n",
" except:\n",
" text_vs_durs[text_len] = [audio_len]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"Collapsed": "false"
},
"outputs": [],
"source": [
"# text_len vs avg_audio_len, median_audio_len, std_audio_len\n",
"text_vs_avg = {}\n",
"text_vs_median = {}\n",
"text_vs_std = {}\n",
"for key, durs in text_vs_durs.items():\n",
" text_vs_avg[key] = np.mean(durs)\n",
" text_vs_median[key] = np.median(durs)\n",
" text_vs_std[key] = np.std(durs)"
]
},
{
"cell_type": "markdown",
"metadata": {
"Collapsed": "false"
},
"source": [
"### Avg audio length per char"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"Collapsed": "false"
},
"outputs": [],
"source": [
"for item in data:\n",
" if item[-1] < 2:\n",
" print(item)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"Collapsed": "false"
},
"outputs": [],
"source": [
"sec_per_chars = []\n",
"for item in data:\n",
" text = item[1]\n",
" dur = item[-1]\n",
" sec_per_char = dur / len(text)\n",
" sec_per_chars.append(sec_per_char)\n",
"# sec_per_char /= len(data)\n",
"# print(sec_per_char)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"Collapsed": "false"
},
"outputs": [],
"source": [
"mean = np.mean(sec_per_chars)\n",
"std = np.std(sec_per_chars)\n",
"print(mean)\n",
"print(std)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"Collapsed": "false"
},
"outputs": [],
"source": [
"dist = norm(mean, std)\n",
"\n",
"# find irregular instances long or short voice durations\n",
"for item in data:\n",
" text = item[1]\n",
" dur = item[-1]\n",
" sec_per_char = dur / len(text)\n",
" pdf =norm.pdf(sec_per_char)\n",
" if pdf < 0.39:\n",
" print(item)"
]
},
{
"cell_type": "markdown",
"metadata": {
"Collapsed": "false"
},
"source": [
"### Plot Dataset Statistics"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"Collapsed": "false"
},
"outputs": [],
"source": [
"plt.title(\"text length vs mean audio duration\")\n",
"plt.scatter(list(text_vs_avg.keys()), list(text_vs_avg.values()))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"Collapsed": "false"
},
"outputs": [],
"source": [
"plt.title(\"text length vs median audio duration\")\n",
"plt.scatter(list(text_vs_median.keys()), list(text_vs_median.values()))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"Collapsed": "false"
},
"outputs": [],
"source": [
"plt.title(\"text length vs STD\")\n",
"plt.scatter(list(text_vs_std.keys()), list(text_vs_std.values()))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"Collapsed": "false"
},
"outputs": [],
"source": [
"plt.title(\"text length vs # instances\")\n",
"plt.scatter(list(text_len_counter.keys()), list(text_len_counter.values()))"
]
},
{
"cell_type": "markdown",
"metadata": {
"Collapsed": "false"
},
"source": [
"### Check words frequencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"Collapsed": "false"
},
"outputs": [],
"source": [
"w_count_df = pd.DataFrame.from_dict(w_count, orient='index')\n",
"w_count_df.sort_values(0, ascending=False, inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"Collapsed": "false",
"scrolled": true
},
"outputs": [],
"source": [
"w_count_df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"Collapsed": "false"
},
"outputs": [],
"source": [
"# check a certain word\n",
"w_count_df.at['minute', 0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"Collapsed": "false"
},
"outputs": [],
"source": [
"# fequency bar plot - it takes time!!\n",
"w_count_df.plot.bar()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
}
},
"nbformat": 4,
"nbformat_minor": 4
}