mirror of https://github.com/coqui-ai/TTS.git
103 lines
3.5 KiB
Markdown
103 lines
3.5 KiB
Markdown
(synthesizing_speech)=
|
|
# Synthesizing Speech
|
|
|
|
First, you need to install TTS. We recommend using PyPi. You need to call the command below:
|
|
|
|
```bash
|
|
$ pip install TTS
|
|
```
|
|
|
|
After the installation, 2 terminal commands are available.
|
|
|
|
1. TTS Command Line Interface (CLI). - `tts`
|
|
2. Local Demo Server. - `tts-server`
|
|
|
|
## On the Commandline - `tts`
|
|

|
|
|
|
After the installation, 🐸TTS provides a CLI interface for synthesizing speech using pre-trained models. You can either use your own model or the release models under 🐸TTS.
|
|
|
|
Listing released 🐸TTS models.
|
|
|
|
```bash
|
|
tts --list_models
|
|
```
|
|
|
|
Run a TTS model, from the release models list, with its default vocoder. (Simply copy and paste the full model names from the list as arguments for the command below.)
|
|
|
|
```bash
|
|
tts --text "Text for TTS" \
|
|
--model_name "<type>/<language>/<dataset>/<model_name>" \
|
|
--out_path folder/to/save/output.wav
|
|
```
|
|
|
|
Run a tts and a vocoder model from the released model list. Note that not every vocoder is compatible with every TTS model.
|
|
|
|
```bash
|
|
tts --text "Text for TTS" \
|
|
--model_name "<type>/<language>/<dataset>/<model_name>" \
|
|
--vocoder_name "<type>/<language>/<dataset>/<model_name>" \
|
|
--out_path folder/to/save/output.wav
|
|
```
|
|
|
|
Run your own TTS model (Using Griffin-Lim Vocoder)
|
|
|
|
```bash
|
|
tts --text "Text for TTS" \
|
|
--model_path path/to/model.pth \
|
|
--config_path path/to/config.json \
|
|
--out_path folder/to/save/output.wav
|
|
```
|
|
|
|
Run your own TTS and Vocoder models
|
|
|
|
```bash
|
|
tts --text "Text for TTS" \
|
|
--config_path path/to/config.json \
|
|
--model_path path/to/model.pth \
|
|
--out_path folder/to/save/output.wav \
|
|
--vocoder_path path/to/vocoder.pth \
|
|
--vocoder_config_path path/to/vocoder_config.json
|
|
```
|
|
|
|
Run a multi-speaker TTS model from the released models list.
|
|
|
|
```bash
|
|
tts --model_name "<type>/<language>/<dataset>/<model_name>" --list_speaker_idxs # list the possible speaker IDs.
|
|
tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --speaker_idx "<speaker_id>"
|
|
```
|
|
|
|
**Note:** You can use ```./TTS/bin/synthesize.py``` if you prefer running ```tts``` from the TTS project folder.
|
|
|
|
## On the Demo Server - `tts-server`
|
|
|
|
<!-- <img src="https://raw.githubusercontent.com/coqui-ai/TTS/main/images/demo_server.gif" height="56"/> -->
|
|

|
|
|
|
You can boot up a demo 🐸TTS server to run an inference with your models. Note that the server is not optimized for performance
|
|
but gives you an easy way to interact with the models.
|
|
|
|
The demo server provides pretty much the same interface as the CLI command.
|
|
|
|
```bash
|
|
tts-server -h # see the help
|
|
tts-server --list_models # list the available models.
|
|
```
|
|
|
|
Run a TTS model, from the release models list, with its default vocoder.
|
|
If the model you choose is a multi-speaker TTS model, you can select different speakers on the Web interface and synthesize
|
|
speech.
|
|
|
|
```bash
|
|
tts-server --model_name "<type>/<language>/<dataset>/<model_name>"
|
|
```
|
|
|
|
Run a TTS and a vocoder model from the released model list. Note that not every vocoder is compatible with every TTS model.
|
|
|
|
```bash
|
|
tts-server --model_name "<type>/<language>/<dataset>/<model_name>" \
|
|
--vocoder_name "<type>/<language>/<dataset>/<model_name>"
|
|
```
|
|
|
|
## TorchHub
|
|
You can also use [this simple colab notebook](https://colab.research.google.com/drive/1iAe7ZdxjUIuN6V4ooaCt0fACEGKEn7HW?usp=sharing) using TorchHub to synthesize speech. |