coqui-tts/TTS/vocoder/models/hifigan_generator.py

176 lines
5.9 KiB
Python

import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils import weight_norm, remove_weight_norm
LRELU_SLOPE = 0.1
def get_padding(k, d):
return int((k * d - d) / 2)
class ResBlock1(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
super().__init__()
self.convs1 = nn.ModuleList([
weight_norm(
Conv1d(channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(
Conv1d(channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
weight_norm(
Conv1d(channels,
channels,
kernel_size,
1,
dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2])))
])
self.convs2 = nn.ModuleList([
weight_norm(
Conv1d(channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(
Conv1d(channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(
Conv1d(channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1)))
])
def forward(self, x):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.leaky_relu(x, LRELU_SLOPE)
xt = c1(xt)
xt = F.leaky_relu(xt, LRELU_SLOPE)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class ResBlock2(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
super().__init__()
self.convs = nn.ModuleList([
weight_norm(
Conv1d(channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(
Conv1d(channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1])))
])
def forward(self, x):
for c in self.convs:
xt = F.leaky_relu(x, LRELU_SLOPE)
xt = c(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class HifiganGenerator(torch.nn.Module):
def __init__(self, in_channels, out_channels, resblock_type, resblock_dilation_sizes,
resblock_kernel_sizes, upsample_kernel_sizes,
upsample_initial_channel, upsample_factors):
super().__init__()
self.inference_padding = 5
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_factors)
self.conv_pre = weight_norm(
Conv1d(in_channels, upsample_initial_channel, 7, 1, padding=3))
resblock = ResBlock1 if resblock_type == '1' else ResBlock2
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_factors,
upsample_kernel_sizes)):
self.ups.append(
weight_norm(
ConvTranspose1d(upsample_initial_channel // (2**i),
upsample_initial_channel // (2**(i + 1)),
k,
u,
padding=(k - u) // 2)))
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = upsample_initial_channel // (2**(i + 1))
for j, (k, d) in enumerate(
zip(resblock_kernel_sizes, resblock_dilation_sizes)):
self.resblocks.append(resblock(ch, k, d))
self.conv_post = weight_norm(Conv1d(ch, out_channels, 7, 1, padding=3))
def forward(self, x):
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, LRELU_SLOPE)
x = self.ups[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def inference(self, c):
c = c.to(self.conv_pre.weight.device)
c = torch.nn.functional.pad(
c, (self.inference_padding, self.inference_padding), 'replicate')
return self.forward(c)
def remove_weight_norm(self):
print('Removing weight norm...')
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)