mirror of https://github.com/coqui-ai/TTS.git
5.0 KiB
5.0 KiB
None
<html lang="en">
<head>
</head>
</html>
In [ ]:
%load_ext autoreload %autoreload 2 import os import sys import io import torch import time import numpy as np from collections import OrderedDict %pylab inline rcParams["figure.figsize"] = (16,5) sys.path.append('/home/erogol/projects/') import librosa import librosa.display from torchviz import make_dot, make_dot_from_trace from TTS.models.tacotron import Tacotron from TTS.layers import * from TTS.utils.data import * from TTS.utils.audio import AudioProcessor from TTS.utils.generic_utils import load_config from TTS.utils.text import text_to_sequence import IPython from IPython.display import Audio from utils import *
In [ ]:
def tts(model, text, CONFIG, use_cuda, ap, figures=True): t_1 = time.time() waveform, alignment, spectrogram = create_speech(model, text, CONFIG, use_cuda, ap) print(" > Run-time: {}".format(time.time() - t_1)) if figures: visualize(alignment, spectrogram, CONFIG) IPython.display.display(Audio(waveform, rate=CONFIG.sample_rate)) return alignment, spectrogram
In [ ]:
# Set constants ROOT_PATH = '/data/shared/erogol_models/March-28-2018_06:24PM/' MODEL_PATH = ROOT_PATH + '/best_model.pth.tar' CONFIG_PATH = ROOT_PATH + '/config.json' OUT_FOLDER = ROOT_PATH + '/test/' CONFIG = load_config(CONFIG_PATH) use_cuda = False
In [ ]:
# load the model model = Tacotron(CONFIG.embedding_size, CONFIG.num_mels, CONFIG.num_freq, CONFIG.r) # load the audio processor ap = AudioProcessor(CONFIG.sample_rate, CONFIG.num_mels, CONFIG.min_level_db, CONFIG.frame_shift_ms, CONFIG.frame_length_ms, CONFIG.preemphasis, CONFIG.ref_level_db, CONFIG.num_freq, CONFIG.power, griffin_lim_iters=80) # load model state if use_cuda: cp = torch.load(MODEL_PATH) else: cp = torch.load(MODEL_PATH, map_location=lambda storage, loc: storage) # # small trick to remove DataParallel wrapper new_state_dict = OrderedDict() for k, v in cp['model'].items(): name = k[7:] # remove `module.` new_state_dict[name] = v cp['model'] = new_state_dict # load the model model.load_state_dict(cp['model']) if use_cuda: model.cuda() model.eval()
EXAMPLES FROM TRAINING SET¶
In [ ]:
import pandas as pd df = pd.read_csv('/data/shared/KeithIto/LJSpeech-1.0/metadata.csv', delimiter='|')
In [ ]:
sentence = df.iloc[120, 1].lower().replace(',','') print(sentence) align = tts(model, sentence, CONFIG, use_cuda, ap)
NEW EXAMPLES¶
In [ ]:
sentence = "Will Donald Trump Jr. offer the country’s business leaders a peek into a new U.S.-India relationship in trade? Defense? Terrorism?" model.decoder.max_decoder_steps = 300 alignment = tts(model, sentence, CONFIG, use_cuda, ap)