mirror of https://github.com/coqui-ai/TTS.git
235 lines
8.7 KiB
Markdown
235 lines
8.7 KiB
Markdown
(synthesizing_speech)=
|
|
# Synthesizing Speech
|
|
|
|
First, you need to install TTS. We recommend using PyPi. You need to call the command below:
|
|
|
|
```bash
|
|
$ pip install TTS
|
|
```
|
|
|
|
After the installation, 2 terminal commands are available.
|
|
|
|
1. TTS Command Line Interface (CLI). - `tts`
|
|
2. Local Demo Server. - `tts-server`
|
|
3. In 🐍Python. - `from TTS.api import TTS`
|
|
|
|
## On the Commandline - `tts`
|
|

|
|
|
|
After the installation, 🐸TTS provides a CLI interface for synthesizing speech using pre-trained models. You can either use your own model or the release models under 🐸TTS.
|
|
|
|
Listing released 🐸TTS models.
|
|
|
|
```bash
|
|
tts --list_models
|
|
```
|
|
|
|
Run a TTS model, from the release models list, with its default vocoder. (Simply copy and paste the full model names from the list as arguments for the command below.)
|
|
|
|
```bash
|
|
tts --text "Text for TTS" \
|
|
--model_name "<type>/<language>/<dataset>/<model_name>" \
|
|
--out_path folder/to/save/output.wav
|
|
```
|
|
|
|
Run a tts and a vocoder model from the released model list. Note that not every vocoder is compatible with every TTS model.
|
|
|
|
```bash
|
|
tts --text "Text for TTS" \
|
|
--model_name "tts_models/<language>/<dataset>/<model_name>" \
|
|
--vocoder_name "vocoder_models/<language>/<dataset>/<model_name>" \
|
|
--out_path folder/to/save/output.wav
|
|
```
|
|
|
|
Run your own TTS model (Using Griffin-Lim Vocoder)
|
|
|
|
```bash
|
|
tts --text "Text for TTS" \
|
|
--model_path path/to/model.pth \
|
|
--config_path path/to/config.json \
|
|
--out_path folder/to/save/output.wav
|
|
```
|
|
|
|
Run your own TTS and Vocoder models
|
|
|
|
```bash
|
|
tts --text "Text for TTS" \
|
|
--config_path path/to/config.json \
|
|
--model_path path/to/model.pth \
|
|
--out_path folder/to/save/output.wav \
|
|
--vocoder_path path/to/vocoder.pth \
|
|
--vocoder_config_path path/to/vocoder_config.json
|
|
```
|
|
|
|
Run a multi-speaker TTS model from the released models list.
|
|
|
|
```bash
|
|
tts --model_name "tts_models/<language>/<dataset>/<model_name>" --list_speaker_idxs # list the possible speaker IDs.
|
|
tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "tts_models/<language>/<dataset>/<model_name>" --speaker_idx "<speaker_id>"
|
|
```
|
|
|
|
Run a released voice conversion model
|
|
|
|
```bash
|
|
tts --model_name "voice_conversion/<language>/<dataset>/<model_name>"
|
|
--source_wav "my/source/speaker/audio.wav"
|
|
--target_wav "my/target/speaker/audio.wav"
|
|
--out_path folder/to/save/output.wav
|
|
```
|
|
|
|
**Note:** You can use ```./TTS/bin/synthesize.py``` if you prefer running ```tts``` from the TTS project folder.
|
|
|
|
## On the Demo Server - `tts-server`
|
|
|
|
<!-- <img src="https://raw.githubusercontent.com/coqui-ai/TTS/main/images/demo_server.gif" height="56"/> -->
|
|

|
|
|
|
You can boot up a demo 🐸TTS server to run an inference with your models. Note that the server is not optimized for performance
|
|
but gives you an easy way to interact with the models.
|
|
|
|
The demo server provides pretty much the same interface as the CLI command.
|
|
|
|
```bash
|
|
tts-server -h # see the help
|
|
tts-server --list_models # list the available models.
|
|
```
|
|
|
|
Run a TTS model, from the release models list, with its default vocoder.
|
|
If the model you choose is a multi-speaker TTS model, you can select different speakers on the Web interface and synthesize
|
|
speech.
|
|
|
|
```bash
|
|
tts-server --model_name "<type>/<language>/<dataset>/<model_name>"
|
|
```
|
|
|
|
Run a TTS and a vocoder model from the released model list. Note that not every vocoder is compatible with every TTS model.
|
|
|
|
```bash
|
|
tts-server --model_name "<type>/<language>/<dataset>/<model_name>" \
|
|
--vocoder_name "<type>/<language>/<dataset>/<model_name>"
|
|
```
|
|
|
|
## Python 🐸TTS API
|
|
|
|
You can run a multi-speaker and multi-lingual model in Python as
|
|
|
|
```python
|
|
from TTS.api import TTS
|
|
|
|
# List available 🐸TTS models and choose the first one
|
|
model_name = TTS().list_models()[0]
|
|
# Init TTS
|
|
tts = TTS(model_name)
|
|
# Run TTS
|
|
# ❗ Since this model is multi-speaker and multi-lingual, we must set the target speaker and the language
|
|
# Text to speech with a numpy output
|
|
wav = tts.tts("This is a test! This is also a test!!", speaker=tts.speakers[0], language=tts.languages[0])
|
|
# Text to speech to a file
|
|
tts.tts_to_file(text="Hello world!", speaker=tts.speakers[0], language=tts.languages[0], file_path="output.wav")
|
|
```
|
|
|
|
#### Here is an example for a single speaker model.
|
|
|
|
```python
|
|
# Init TTS with the target model name
|
|
tts = TTS(model_name="tts_models/de/thorsten/tacotron2-DDC", progress_bar=False)
|
|
# Run TTS
|
|
tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path=OUTPUT_PATH)
|
|
```
|
|
|
|
#### Example voice cloning with YourTTS in English, French and Portuguese:
|
|
|
|
```python
|
|
tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False).to("cuda")
|
|
tts.tts_to_file("This is voice cloning.", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav")
|
|
tts.tts_to_file("C'est le clonage de la voix.", speaker_wav="my/cloning/audio.wav", language="fr", file_path="output.wav")
|
|
tts.tts_to_file("Isso é clonagem de voz.", speaker_wav="my/cloning/audio.wav", language="pt", file_path="output.wav")
|
|
```
|
|
|
|
#### Example voice conversion converting speaker of the `source_wav` to the speaker of the `target_wav`
|
|
|
|
```python
|
|
tts = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False).to("cuda")
|
|
tts.voice_conversion_to_file(source_wav="my/source.wav", target_wav="my/target.wav", file_path="output.wav")
|
|
```
|
|
|
|
#### Example voice cloning by a single speaker TTS model combining with the voice conversion model.
|
|
|
|
This way, you can clone voices by using any model in 🐸TTS.
|
|
|
|
```python
|
|
tts = TTS("tts_models/de/thorsten/tacotron2-DDC")
|
|
tts.tts_with_vc_to_file(
|
|
"Wie sage ich auf Italienisch, dass ich dich liebe?",
|
|
speaker_wav="target/speaker.wav",
|
|
file_path="ouptut.wav"
|
|
)
|
|
```
|
|
|
|
#### Example text to speech using [🐸Coqui Studio](https://coqui.ai) models.
|
|
|
|
You can use all of your available speakers in the studio.
|
|
[🐸Coqui Studio](https://coqui.ai) API token is required. You can get it from the [account page](https://coqui.ai/account).
|
|
You should set the `COQUI_STUDIO_TOKEN` environment variable to use the API token.
|
|
|
|
```python
|
|
# If you have a valid API token set you will see the studio speakers as separate models in the list.
|
|
# The name format is coqui_studio/en/<studio_speaker_name>/coqui_studio
|
|
models = TTS().list_models()
|
|
# Init TTS with the target studio speaker
|
|
tts = TTS(model_name="coqui_studio/en/Torcull Diarmuid/coqui_studio", progress_bar=False)
|
|
# Run TTS
|
|
tts.tts_to_file(text="This is a test.", file_path=OUTPUT_PATH)
|
|
# Run TTS with emotion and speed control
|
|
tts.tts_to_file(text="This is a test.", file_path=OUTPUT_PATH, emotion="Happy", speed=1.5)
|
|
```
|
|
|
|
If you just need 🐸 Coqui Studio speakers, you can use `CS_API`. It is a wrapper around the 🐸 Coqui Studio API.
|
|
|
|
```python
|
|
from TTS.api import CS_API
|
|
|
|
# Init 🐸 Coqui Studio API
|
|
# you can either set the API token as an environment variable `COQUI_STUDIO_TOKEN` or pass it as an argument.
|
|
|
|
# XTTS - Best quality and life-like speech in EN
|
|
api = CS_API(api_token=<token>, model="XTTS")
|
|
api.speakers # all the speakers are available with all the models.
|
|
api.list_speakers()
|
|
api.list_voices()
|
|
wav, sample_rate = api.tts(text="This is a test.", speaker=api.speakers[0].name, emotion="Happy", speed=1.5)
|
|
|
|
# XTTS-multilingual - Multilingual XTTS with [en, de, es, fr, it, pt, ...] (more langs coming soon)
|
|
api = CS_API(api_token=<token>, model="XTTS-multilingual")
|
|
api.speakers
|
|
api.list_speakers()
|
|
api.list_voices()
|
|
wav, sample_rate = api.tts(text="This is a test.", speaker=api.speakers[0].name, emotion="Happy", speed=1.5)
|
|
|
|
# V1 - Fast and lightweight TTS in EN with emotion control.
|
|
api = CS_API(api_token=<token>, model="V1")
|
|
api.speakers
|
|
api.emotions # emotions are only for the V1 model.
|
|
api.list_speakers()
|
|
api.list_voices()
|
|
wav, sample_rate = api.tts(text="This is a test.", speaker=api.speakers[0].name, emotion="Happy", speed=1.5)
|
|
```
|
|
|
|
#### Example text to speech using **Fairseq models in ~1100 languages** 🤯.
|
|
For these models use the following name format: `tts_models/<lang-iso_code>/fairseq/vits`.
|
|
|
|
You can find the list of language ISO codes [here](https://dl.fbaipublicfiles.com/mms/tts/all-tts-languages.html) and learn about the Fairseq models [here](https://github.com/facebookresearch/fairseq/tree/main/examples/mms).
|
|
|
|
```python
|
|
from TTS.api import TTS
|
|
api = TTS(model_name="tts_models/eng/fairseq/vits").to("cuda")
|
|
api.tts_to_file("This is a test.", file_path="output.wav")
|
|
|
|
# TTS with on the fly voice conversion
|
|
api = TTS("tts_models/deu/fairseq/vits")
|
|
api.tts_with_vc_to_file(
|
|
"Wie sage ich auf Italienisch, dass ich dich liebe?",
|
|
speaker_wav="target/speaker.wav",
|
|
file_path="ouptut.wav"
|
|
)
|
|
``` |