2018-10-01 16:31:15 +00:00
|
|
|
"""
|
|
|
|
Health Information Privacy Lab
|
2019-03-05 17:08:47 +00:00
|
|
|
Brad. Malin, Weiyi Xia, Steve L. Nyemba
|
2018-10-01 16:31:15 +00:00
|
|
|
|
2019-03-05 17:08:47 +00:00
|
|
|
This framework computes re-identification risk of a dataset assuming the data being shared can be loaded into a dataframe (pandas)
|
|
|
|
The framework will compute the following risk measures:
|
|
|
|
- marketer
|
|
|
|
- prosecutor
|
|
|
|
- pitman
|
2018-10-01 16:31:15 +00:00
|
|
|
|
2019-03-05 17:08:47 +00:00
|
|
|
References :
|
|
|
|
https://www.scb.se/contentassets/ff271eeeca694f47ae99b942de61df83/applying-pitmans-sampling-formula-to-microdata-disclosure-risk-assessment.pdf
|
2018-10-01 16:31:15 +00:00
|
|
|
|
2019-03-05 17:08:47 +00:00
|
|
|
This framework integrates pandas (for now) as an extension and can be used in two modes :
|
|
|
|
Experimental mode
|
|
|
|
Here the assumption is that we are not sure of the attributes to be disclosed, the framework will explore a variety of combinations and associate risk measures every random combinations
|
2018-10-01 16:31:15 +00:00
|
|
|
|
2019-03-05 17:08:47 +00:00
|
|
|
Evaluation mode
|
|
|
|
The evaluation mode assumes the set of attributes given are known and thus will evaluate risk for a subset of attributes.
|
|
|
|
|
|
|
|
features :
|
|
|
|
- determine viable fields (quantifiable in terms of uniqueness). This is a way to identify fields that can act as identifiers.
|
|
|
|
- explore and evaluate risk of a sample dataset against a known population dataset
|
|
|
|
- explore and evaluate risk on a sample dataset
|
2018-10-01 16:31:15 +00:00
|
|
|
Usage:
|
|
|
|
from pandas_risk import *
|
|
|
|
|
|
|
|
mydataframe = pd.DataFrame('/myfile.csv')
|
2019-03-05 17:58:48 +00:00
|
|
|
resp = mydataframe.risk.evaluate(id=<name of patient field>,num_runs=<number of runs>,cols=[])
|
|
|
|
resp = mydataframe.risk.explore(id=<name of patient field>,num_runs=<number of runs>,cols=[])
|
2018-10-01 16:31:15 +00:00
|
|
|
|
|
|
|
|
|
|
|
@TODO:
|
|
|
|
- Provide a selected number of fields and risk will be computed for those fields.
|
|
|
|
- include journalist risk
|
|
|
|
|
|
|
|
"""
|
|
|
|
import pandas as pd
|
|
|
|
import numpy as np
|
2019-03-05 17:08:47 +00:00
|
|
|
import logging
|
|
|
|
import json
|
|
|
|
from datetime import datetime
|
|
|
|
import sys
|
|
|
|
|
2019-03-05 17:58:48 +00:00
|
|
|
|
|
|
|
@pd.api.extensions.register_dataframe_accessor("risk")
|
2018-10-01 16:31:15 +00:00
|
|
|
class deid :
|
2019-03-05 17:08:47 +00:00
|
|
|
|
2018-10-01 16:31:15 +00:00
|
|
|
"""
|
2019-03-05 17:08:47 +00:00
|
|
|
This class is a deidentification class that will compute risk (marketer, prosecutor) given a pandas dataframe
|
2018-10-01 16:31:15 +00:00
|
|
|
"""
|
|
|
|
def __init__(self,df):
|
2018-11-20 16:26:07 +00:00
|
|
|
self._df = df.fillna(' ')
|
2019-03-05 17:08:47 +00:00
|
|
|
|
2018-11-20 16:26:07 +00:00
|
|
|
def explore(self,**args):
|
|
|
|
"""
|
|
|
|
This function will perform experimentation by performing a random policies (combinations of attributes)
|
|
|
|
This function is intended to explore a variety of policies and evaluate their associated risk.
|
|
|
|
|
|
|
|
@param pop|sample data-frame with popublation reference
|
|
|
|
@param id key field that uniquely identifies patient/customer ...
|
|
|
|
"""
|
2019-03-05 21:15:16 +00:00
|
|
|
|
2018-11-20 16:26:07 +00:00
|
|
|
pop= args['pop'] if 'pop' in args else None
|
2019-03-05 17:08:47 +00:00
|
|
|
|
|
|
|
if 'pop_size' in args :
|
|
|
|
pop_size = np.float64(args['pop_size'])
|
|
|
|
else:
|
|
|
|
pop_size = -1
|
|
|
|
|
|
|
|
|
2018-11-20 16:26:07 +00:00
|
|
|
#
|
|
|
|
# Policies will be generated with a number of runs
|
|
|
|
#
|
|
|
|
RUNS = args['num_runs'] if 'num_runs' in args else 5
|
|
|
|
|
|
|
|
sample = args['sample'] if 'sample' in args else pd.DataFrame(self._df)
|
|
|
|
|
2019-03-05 21:45:51 +00:00
|
|
|
k = sample.columns.size if 'field_count' not in args else int(args['field_count']) + 1
|
2019-03-05 21:15:16 +00:00
|
|
|
if 'id' in args :
|
|
|
|
id = args['id']
|
|
|
|
columns = list(set(sample.columns.tolist()) - set([id]))
|
|
|
|
else:
|
|
|
|
columns = sample.columns.tolist()
|
2018-11-20 16:26:07 +00:00
|
|
|
o = pd.DataFrame()
|
2019-03-05 17:08:47 +00:00
|
|
|
|
2018-11-20 16:26:07 +00:00
|
|
|
for i in np.arange(RUNS):
|
|
|
|
n = np.random.randint(2,k)
|
|
|
|
|
|
|
|
cols = np.random.choice(columns,n,replace=False).tolist()
|
|
|
|
params = {'sample':sample,'cols':cols}
|
|
|
|
if pop is not None :
|
|
|
|
params['pop'] = pop
|
2019-03-05 17:08:47 +00:00
|
|
|
if pop_size > 0 :
|
|
|
|
params['pop_size'] = pop_size
|
|
|
|
|
2018-11-20 16:26:07 +00:00
|
|
|
r = self.evaluate(**params)
|
|
|
|
#
|
|
|
|
# let's put the policy in place
|
|
|
|
p = pd.DataFrame(1*sample.columns.isin(cols)).T
|
|
|
|
p.columns = sample.columns
|
|
|
|
o = o.append(r.join(p))
|
|
|
|
|
|
|
|
o.index = np.arange(o.shape[0]).astype(np.int64)
|
|
|
|
|
|
|
|
return o
|
2019-03-05 17:08:47 +00:00
|
|
|
def evaluate(self, **args):
|
2018-11-20 16:26:07 +00:00
|
|
|
"""
|
2019-03-05 17:08:47 +00:00
|
|
|
This function has the ability to evaluate risk associated with either a population or a sample dataset
|
|
|
|
:sample sample dataset
|
|
|
|
:pop population dataset
|
|
|
|
:cols list of columns of interest or policies
|
|
|
|
:flag user provided flag for the context of the evaluation
|
2018-11-20 16:26:07 +00:00
|
|
|
"""
|
2019-03-05 17:08:47 +00:00
|
|
|
if 'sample' in args :
|
|
|
|
sample = pd.DataFrame(args['sample'])
|
|
|
|
else:
|
|
|
|
sample = pd.DataFrame(self._df)
|
|
|
|
|
2018-12-11 23:42:37 +00:00
|
|
|
if not args or 'cols' not in args:
|
2019-03-05 17:08:47 +00:00
|
|
|
cols = sample.columns.tolist()
|
|
|
|
elif args and 'cols' in args:
|
2018-11-20 16:26:07 +00:00
|
|
|
cols = args['cols']
|
2019-03-05 17:08:47 +00:00
|
|
|
flag = 'UNFLAGGED' if 'flag' not in args else args['flag']
|
|
|
|
#
|
|
|
|
# @TODO: auto select the columns i.e removing the columns that will have the effect of an identifier
|
|
|
|
#
|
|
|
|
# if 'population' in args :
|
|
|
|
# pop = pd.DataFrame(args['population'])
|
|
|
|
r = {"flag":flag}
|
|
|
|
# if sample :
|
|
|
|
|
|
|
|
handle_sample = Sample()
|
|
|
|
xi = sample.groupby(cols,as_index=False).size().values
|
|
|
|
|
|
|
|
handle_sample.set('groups',xi)
|
|
|
|
if 'pop_size' in args :
|
|
|
|
pop_size = np.float64(args['pop_size'])
|
|
|
|
else:
|
|
|
|
pop_size = -1
|
|
|
|
#
|
|
|
|
#-- The following conditional line is to address the labels that will be returned
|
|
|
|
# @TODO: Find a more elegant way of doing this.
|
|
|
|
#
|
2018-11-20 16:26:07 +00:00
|
|
|
if 'pop' in args :
|
2019-03-05 17:08:47 +00:00
|
|
|
r['sample marketer'] = handle_sample.marketer()
|
|
|
|
r['sample prosecutor'] = handle_sample.prosecutor()
|
|
|
|
r['sample unique ratio'] = handle_sample.unique_ratio()
|
|
|
|
r['sample group count'] = xi.size
|
2018-11-20 16:26:07 +00:00
|
|
|
else:
|
2019-03-05 17:08:47 +00:00
|
|
|
r['marketer'] = handle_sample.marketer()
|
|
|
|
r['prosecutor'] = handle_sample.prosecutor()
|
|
|
|
r['unique ratio'] = handle_sample.unique_ratio()
|
|
|
|
r['group count'] = xi.size
|
|
|
|
if pop_size > 0 :
|
|
|
|
handle_sample.set('pop_size',pop_size)
|
|
|
|
r['pitman risk'] = handle_sample.pitman()
|
|
|
|
if 'pop' in args :
|
|
|
|
xi = pd.DataFrame({"sample_group_size":sample.groupby(cols,as_index=False).size()}).reset_index()
|
2019-03-05 17:58:48 +00:00
|
|
|
yi = pd.DataFrame({"population_group_size":args['pop'].groupby(cols,as_index=False).size()}).reset_index()
|
2019-03-05 17:08:47 +00:00
|
|
|
merged_groups = pd.merge(xi,yi,on=cols,how='inner')
|
|
|
|
handle_population= Population()
|
|
|
|
handle_population.set('merged_groups',merged_groups)
|
|
|
|
|
|
|
|
r['pop. marketer'] = handle_population.marketer()
|
|
|
|
r['pitman risk'] = handle_population.pitman()
|
|
|
|
r['pop. group size'] = np.unique(yi.population_group_size).size
|
|
|
|
#
|
|
|
|
# At this point we have both columns for either sample,population or both
|
|
|
|
#
|
|
|
|
r['field count'] = len(cols)
|
|
|
|
return pd.DataFrame([r])
|
|
|
|
|
|
|
|
class Risk :
|
|
|
|
"""
|
|
|
|
This class is an abstraction of how we chose to structure risk computation i.e in 2 sub classes:
|
|
|
|
- Sample computes risk associated with a sample dataset only
|
|
|
|
- Population computes risk associated with a population
|
|
|
|
"""
|
|
|
|
def __init__(self):
|
|
|
|
self.cache = {}
|
|
|
|
def set(self,key,value):
|
|
|
|
if id not in self.cache :
|
|
|
|
self.cache[id] = {}
|
|
|
|
self.cache[key] = value
|
|
|
|
|
|
|
|
class Sample(Risk):
|
|
|
|
"""
|
|
|
|
This class will compute risk for the sample dataset: the marketer and prosecutor risk are computed by default.
|
|
|
|
This class can optionally add pitman risk if the population size is known.
|
|
|
|
"""
|
|
|
|
def __init__(self):
|
|
|
|
Risk.__init__(self)
|
|
|
|
def marketer(self):
|
2018-10-01 16:31:15 +00:00
|
|
|
"""
|
2019-03-05 17:08:47 +00:00
|
|
|
computing marketer risk for sample dataset
|
2018-10-01 16:31:15 +00:00
|
|
|
"""
|
2019-03-05 17:08:47 +00:00
|
|
|
groups = self.cache['groups']
|
|
|
|
group_count = groups.size
|
|
|
|
row_count = groups.sum()
|
|
|
|
return group_count / np.float64(row_count)
|
2018-10-22 18:21:40 +00:00
|
|
|
|
2019-03-05 17:08:47 +00:00
|
|
|
def prosecutor(self):
|
|
|
|
"""
|
|
|
|
The prosecutor risk consists in determining 1 over the smallest group size
|
|
|
|
It identifies if there is at least one record that is unique
|
|
|
|
"""
|
|
|
|
groups = self.cache['groups']
|
|
|
|
return 1 / np.float64(groups.min())
|
|
|
|
def unique_ratio(self):
|
|
|
|
groups = self.cache['groups']
|
|
|
|
row_count = groups.sum()
|
|
|
|
return groups[groups == 1].sum() / np.float64(row_count)
|
|
|
|
|
|
|
|
def pitman(self):
|
|
|
|
"""
|
|
|
|
This function will approximate pitman de-identification risk based on pitman sampling
|
|
|
|
"""
|
|
|
|
groups = self.cache['groups']
|
|
|
|
si = groups[groups == 1].size
|
|
|
|
u = groups.size
|
|
|
|
alpha = np.divide(si , np.float64(u) )
|
|
|
|
f = np.divide(groups.sum(), np.float64(self.cache['pop_size']))
|
|
|
|
return np.power(f,1-alpha)
|
|
|
|
|
|
|
|
class Population(Sample):
|
|
|
|
"""
|
|
|
|
This class will compute risk for datasets that have population information or datasets associated with them.
|
|
|
|
This computation includes pitman risk (it requires minimal information about population)
|
|
|
|
"""
|
|
|
|
def __init__(self,**args):
|
|
|
|
Sample.__init__(self)
|
2018-10-22 18:21:40 +00:00
|
|
|
|
2019-03-05 17:08:47 +00:00
|
|
|
def set(self,key,value):
|
2019-03-05 17:58:48 +00:00
|
|
|
Sample.set(self,key,value)
|
|
|
|
if key == 'merged_groups' :
|
|
|
|
|
|
|
|
Sample.set(self,'pop_size',np.float64(value.population_group_size.sum()) )
|
|
|
|
Sample.set(self,'groups',value.sample_group_size)
|
2019-03-05 17:08:47 +00:00
|
|
|
"""
|
|
|
|
This class will measure risk and account for the existance of a population
|
|
|
|
:merged_groups {sample_group_size, population_group_size} is a merged dataset with group sizes of both population and sample
|
|
|
|
"""
|
|
|
|
def marketer(self):
|
|
|
|
"""
|
|
|
|
This function requires
|
|
|
|
"""
|
|
|
|
r = self.cache['merged_groups']
|
|
|
|
sample_row_count = r.sample_group_size.sum()
|
|
|
|
#
|
|
|
|
# @TODO : make sure the above line is size (not sum)
|
|
|
|
# sample_row_count = r.sample_group_size.size
|
|
|
|
return r.apply(lambda row: (row.sample_group_size / np.float64(row.population_group_size)) /np.float64(sample_row_count) ,axis=1).sum()
|
2019-03-05 17:58:48 +00:00
|
|
|
|
|
|
|
|