bug fix: prosecutor risk, marketer risk
This commit is contained in:
parent
18bfa63df1
commit
140a4c4573
|
@ -2,15 +2,29 @@
|
|||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 66,
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"dev-deid-600@aou-res-deid-vumc-test.iam.gserviceaccount.com df0ac049-d5b6-416f-ab3c-6321eda919d6 2018-09-25 08:18:34.829000+00:00 DONE\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np\n",
|
||||
"from google.cloud import bigquery as bq\n",
|
||||
"\n",
|
||||
"client = bq.Client.from_service_account_json('/home/steve/dev/google-cloud-sdk/accounts/vumc-test.json')"
|
||||
"client = bq.Client.from_service_account_json('/home/steve/dev/google-cloud-sdk/accounts/vumc-test.json')\n",
|
||||
"# pd.read_gbq(query=\"select * from raw.observation limit 10\",private_key='/home/steve/dev/google-cloud-sdk/accounts/vumc-test.json')\n",
|
||||
"jobs = client.list_jobs()\n",
|
||||
"for job in jobs :\n",
|
||||
"# print dir(job)\n",
|
||||
" print job.user_email,job.job_id,job.started, job.state\n",
|
||||
" break"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -25,7 +39,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 181,
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -68,7 +82,7 @@
|
|||
" else:\n",
|
||||
" x_ = args['xi']\n",
|
||||
" for xi in x_ :\n",
|
||||
" fields += (['.'.join([xi['name'],name]) for name in xi['fields'] if name != args['join']])\n",
|
||||
" fields += (['.'.join([xi['name'], name]) for name in xi['fields'] if name != args['join']])\n",
|
||||
" return fields\n",
|
||||
"def generate_sql(**args):\n",
|
||||
" \"\"\"\n",
|
||||
|
@ -97,7 +111,27 @@
|
|||
" tmp.append(ON_SQL)\n",
|
||||
" INNER_JOINS += [JOIN_SQL + \" AND \".join(tmp)]\n",
|
||||
" return SQL + \" \".join(INNER_JOINS)\n",
|
||||
"def get_final_sql(**args):\n",
|
||||
" xo = args['xo']\n",
|
||||
" xi = args['xi']\n",
|
||||
" join=args['join']\n",
|
||||
" prefix = args['prefix'] if 'prefix' in args else ''\n",
|
||||
" fields = get_fields (xo=xo,xi=xi,join=join)\n",
|
||||
" k = len(fields)\n",
|
||||
" n = np.random.randint(2,k) #-- number of fields to select\n",
|
||||
" i = np.random.randint(0,k,size=n)\n",
|
||||
" fields = [name for name in fields if fields.index(name) in i]\n",
|
||||
" base_sql = generate_sql(xo=xo,xi=xi,prefix)\n",
|
||||
" SQL = \"\"\"\n",
|
||||
" SELECT AVERAGE(count),size,n as selected_features,k as total_features\n",
|
||||
" FROM(\n",
|
||||
" SELECT COUNT(*) as count,count(:join) as pop,sum(:n) as N,sum(:k) as k,:fields\n",
|
||||
" FROM (:sql)\n",
|
||||
" GROUP BY :fields\n",
|
||||
" ) \n",
|
||||
" order by 1\n",
|
||||
" \n",
|
||||
" \"\"\".replace(\":sql\",base_sql)\n",
|
||||
"# sql = \"SELECT :fields FROM :xo.name INNER JOIN :xi.name ON :xi.name.:xi.y = :xo.y \"\n",
|
||||
"# fields = \",\".join(get_fields(xo=xi,xi=xi,join=xi['y']))\n",
|
||||
" \n",
|
||||
|
@ -111,24 +145,39 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 183,
|
||||
"execution_count": 33,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"xo = {\"name\":\"person\",\"fields\":['person_id','date_of_birth','race','value_as_number']}\n",
|
||||
"xi = [{\"name\":\"measurement\",\"fields\":['person_id','value_as_number','value_source_value']}] #,{\"name\":\"observation\",\"fields\":[\"person_id\",\"value_as_string\",\"observation_source_value\"]}]\n",
|
||||
"# generate_sql(xo=xo,xi=xi,join=\"person_id\",prefix='raw')\n",
|
||||
"fields = get_fields(xo=xo,xi=xi,join='person_id')\n",
|
||||
"ofields = list(fields)\n",
|
||||
"k = len(fields)\n",
|
||||
"n = np.random.randint(2,k) #-- number of fields to select\n",
|
||||
"i = np.random.randint(0,k,size=n)\n",
|
||||
"fields = [name for name in fields if fields.index(name) in i]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 34,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'SELECT :fields FROM raw.person INNER JOIN raw.measurement ON measurement.person_id = person.person_id'"
|
||||
"['person.race', 'person.value_as_number', 'measurement.value_source_value']"
|
||||
]
|
||||
},
|
||||
"execution_count": 183,
|
||||
"execution_count": 34,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"xo = {\"name\":\"person\",\"fields\":['person_id','date_of_birth','race']}\n",
|
||||
"xi = [{\"name\":\"measurement\",\"fields\":['person_id','value_as_number','value_source_value']}] #,{\"name\":\"observation\",\"fields\":[\"person_id\",\"value_as_string\",\"observation_source_value\"]}]\n",
|
||||
"generate_sql(xo=xo,xi=xi,join=\"person_id\",prefix='raw')"
|
||||
"fields\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -179,69 +228,16 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 111,
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[u'condition_occurrence.condition_occurrence_id',\n",
|
||||
" u'condition_occurrence.person_id',\n",
|
||||
" u'condition_occurrence.condition_concept_id',\n",
|
||||
" u'condition_occurrence.condition_start_date',\n",
|
||||
" u'condition_occurrence.condition_start_datetime',\n",
|
||||
" u'condition_occurrence.condition_end_date',\n",
|
||||
" u'condition_occurrence.condition_end_datetime',\n",
|
||||
" u'condition_occurrence.condition_type_concept_id',\n",
|
||||
" u'condition_occurrence.stop_reason',\n",
|
||||
" u'condition_occurrence.provider_id',\n",
|
||||
" u'condition_occurrence.visit_occurrence_id',\n",
|
||||
" u'condition_occurrence.condition_source_value',\n",
|
||||
" u'condition_occurrence.condition_source_concept_id',\n",
|
||||
" u'death.death_date',\n",
|
||||
" u'death.death_datetime',\n",
|
||||
" u'death.death_type_concept_id',\n",
|
||||
" u'death.cause_concept_id',\n",
|
||||
" u'death.cause_source_value',\n",
|
||||
" u'death.cause_source_concept_id',\n",
|
||||
" u'device_exposure.device_exposure_id',\n",
|
||||
" u'device_exposure.device_concept_id',\n",
|
||||
" u'device_exposure.device_exposure_start_date',\n",
|
||||
" u'device_exposure.device_exposure_start_datetime',\n",
|
||||
" u'device_exposure.device_exposure_end_date',\n",
|
||||
" u'device_exposure.device_exposure_end_datetime',\n",
|
||||
" u'device_exposure.device_type_concept_id',\n",
|
||||
" u'device_exposure.unique_device_id',\n",
|
||||
" u'device_exposure.quantity',\n",
|
||||
" u'device_exposure.provider_id',\n",
|
||||
" u'device_exposure.visit_occurrence_id',\n",
|
||||
" u'device_exposure.device_source_value',\n",
|
||||
" u'device_exposure.device_source_concept_id',\n",
|
||||
" u'drug_exposure.drug_exposure_id',\n",
|
||||
" u'drug_exposure.drug_concept_id',\n",
|
||||
" u'drug_exposure.drug_exposure_start_date',\n",
|
||||
" u'drug_exposure.drug_exposure_start_datetime',\n",
|
||||
" u'drug_exposure.drug_exposure_end_date',\n",
|
||||
" u'drug_exposure.drug_exposure_end_datetime',\n",
|
||||
" u'drug_exposure.drug_type_concept_id',\n",
|
||||
" u'drug_exposure.stop_reason',\n",
|
||||
" u'drug_exposure.refills',\n",
|
||||
" u'drug_exposure.quantity',\n",
|
||||
" u'drug_exposure.days_supply',\n",
|
||||
" u'drug_exposure.sig',\n",
|
||||
" u'drug_exposure.route_concept_id',\n",
|
||||
" u'drug_exposure.effective_drug_dose',\n",
|
||||
" u'drug_exposure.dose_unit_concept_id',\n",
|
||||
" u'drug_exposure.lot_number',\n",
|
||||
" u'drug_exposure.provider_id',\n",
|
||||
" u'drug_exposure.visit_occurrence_id',\n",
|
||||
" u'drug_exposure.drug_source_value',\n",
|
||||
" u'drug_exposure.drug_source_concept_id',\n",
|
||||
" u'drug_exposure.route_source_value',\n",
|
||||
" u'drug_exposure.dose_unit_source_value']"
|
||||
"array([1, 3, 0, 0])"
|
||||
]
|
||||
},
|
||||
"execution_count": 111,
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
|
@ -250,12 +246,7 @@
|
|||
"#\n",
|
||||
"# find every table with person id at the very least or a subset of fields\n",
|
||||
"#\n",
|
||||
"info = get_tables(client,'raw',['person_id'])\n",
|
||||
"# get_fields(xo=names[0],xi=names[1:4],join='person_id')\n",
|
||||
"\n",
|
||||
"# q = ['person_id']\n",
|
||||
"# pairs = list(itertools.combinations(names,len(names)))\n",
|
||||
"# pairs[0]"
|
||||
"np.random.randint(0,4,size=4)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -287,6 +278,72 @@
|
|||
"x_ = 1"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"x_ = pd.DataFrame({\"group\":[1,1,1,1,1], \"size\":[2,1,1,1,1]})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>size</th>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>group</th>\n",
|
||||
" <th></th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>1.2</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" size\n",
|
||||
"group \n",
|
||||
"1 1.2"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"x_.groupby(['group']).mean()\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
|
|
|
@ -0,0 +1,17 @@
|
|||
import sys
|
||||
SYS_ARGS={}
|
||||
if len(sys.argv) > 1 :
|
||||
N = len(sys.argv)
|
||||
for i in range(1,N) :
|
||||
value = 1
|
||||
|
||||
if sys.argv[i].startswith('--') :
|
||||
key = sys.argv[i].replace('-','')
|
||||
|
||||
if i + 1 < N and not sys.argv[i+1].startswith('--') :
|
||||
value = sys.argv[i + 1].strip()
|
||||
SYS_ARGS[key] = value
|
||||
i += 2
|
||||
elif 'action' not in SYS_ARGS:
|
||||
SYS_ARGS['action'] = sys.argv[i].strip()
|
||||
|
|
@ -0,0 +1,226 @@
|
|||
"""
|
||||
Steve L. Nyemba & Brad Malin
|
||||
Health Information Privacy Lab.
|
||||
|
||||
This code is proof of concept as to how risk is computed against a database (at least a schema).
|
||||
The engine will read tables that have a given criteria (patient id) and generate a dataset by performing joins.
|
||||
Because joins are process intensive we decided to add a limit to the records pulled.
|
||||
|
||||
TL;DR:
|
||||
This engine generates a dataset and computes risk (marketer and prosecutor)
|
||||
Assumptions:
|
||||
- We assume tables that reference patients will name the keys identically (best practice). This allows us to be able to leverage data store's that don't support referential integrity
|
||||
|
||||
Usage :
|
||||
|
||||
Limitations
|
||||
- It works against bigquery for now
|
||||
@TODO:
|
||||
- Need to write a transport layer (database interface)
|
||||
- Support for referential integrity, so one table can be selected and a dataset derived given referential integrity
|
||||
- Add support for journalist risk
|
||||
"""
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from google.cloud import bigquery as bq
|
||||
import time
|
||||
from params import SYS_ARGS
|
||||
class utils :
|
||||
"""
|
||||
This class is a utility class that will generate SQL-11 compatible code in order to run the risk assessment
|
||||
|
||||
@TODO: plugins for other data-stores
|
||||
"""
|
||||
def __init__(self,**args):
|
||||
# self.path = args['path']
|
||||
self.client = args['client']
|
||||
|
||||
def get_tables(self,**args): #id,key='person_id'):
|
||||
"""
|
||||
This function returns a list of tables given a key. The key is the name of the field that uniquely designates a patient/person
|
||||
in the database. The list of tables are tables that can be joined given the provided field.
|
||||
|
||||
@param key name of the patient field
|
||||
@param dataset dataset name
|
||||
@param client initialized bigquery client ()
|
||||
@return [{name,fields:[],row_count}]
|
||||
"""
|
||||
dataset = args['dataset']
|
||||
client = args['client']
|
||||
key = args['key']
|
||||
r = []
|
||||
ref = client.dataset(dataset)
|
||||
tables = list(client.list_tables(ref))
|
||||
for table in tables :
|
||||
|
||||
if table.table_id.strip() in ['people_seed']:
|
||||
print ' skiping ...'
|
||||
continue
|
||||
ref = table.reference
|
||||
table = client.get_table(ref)
|
||||
schema = table.schema
|
||||
rows = table.num_rows
|
||||
if rows == 0 :
|
||||
continue
|
||||
names = [f.name for f in schema]
|
||||
x = list(set(names) & set([key]))
|
||||
if x :
|
||||
full_name = ".".join([dataset,table.table_id])
|
||||
r.append({"name":table.table_id,"fields":names,"row_count":rows,"full_name":full_name})
|
||||
return r
|
||||
def get_field_name(self,alias,field_name,index):
|
||||
"""
|
||||
This function will format the a field name given an index (the number of times it has occurred in projection)
|
||||
The index is intended to avoid a "duplicate field" error (bigquery issue)
|
||||
|
||||
@param alias alias of the table
|
||||
@param field_name name of the field to be formatted
|
||||
@param index the number of times the field appears in the projection
|
||||
"""
|
||||
name = [alias,field_name]
|
||||
if index > 0 :
|
||||
return ".".join(name)+" AS :field_name:index".replace(":field_name",field_name).replace(":index",str(index))
|
||||
else:
|
||||
return ".".join(name)
|
||||
def get_sql(self,**args):
|
||||
"""
|
||||
This function will generate that will join a list of tables given a key and a limit of records
|
||||
@param tables list of tables
|
||||
@param key key field to be used in the join. The assumption is that the field name is identical across tables (best practice!)
|
||||
@param limit a limit imposed, in case of ristrictions considering joins are resource intensive
|
||||
"""
|
||||
tables = args['tables']
|
||||
key = args['key']
|
||||
limit = args['limit'] if 'limit' in args else 300000
|
||||
limit = str(limit)
|
||||
SQL = [
|
||||
"""
|
||||
SELECT :fields
|
||||
FROM
|
||||
"""]
|
||||
fields = []
|
||||
prev_table = None
|
||||
for table in tables :
|
||||
name = table['full_name'] #".".join([self.i_dataset,table['name']])
|
||||
alias= table['name']
|
||||
index = tables.index(table)
|
||||
sql_ = """
|
||||
(select * from :name limit :limit) as :alias
|
||||
""".replace(":limit",limit)
|
||||
sql_ = sql_.replace(":name",name).replace(":alias",alias)
|
||||
fields += [self.get_field_name(alias,field_name,index) for field_name in table['fields'] if field_name != key or (field_name==key and tables.index(table) == 0) ]
|
||||
if tables.index(table) > 0 :
|
||||
join = """
|
||||
INNER JOIN :sql ON :alias.:field = :prev_alias.:field
|
||||
""".replace(":name",name)
|
||||
join = join.replace(":alias",alias).replace(":field",key).replace(":prev_alias",prev_alias)
|
||||
sql_ = join.replace(":sql",sql_)
|
||||
# sql_ = " ".join([sql_,join])
|
||||
SQL += [sql_]
|
||||
if index == 0:
|
||||
prev_alias = str(alias)
|
||||
|
||||
return " ".join(SQL).replace(":fields"," , ".join(fields))
|
||||
|
||||
class risk :
|
||||
"""
|
||||
This class will handle the creation of an SQL query that computes marketer and prosecutor risk (for now)
|
||||
"""
|
||||
def __init__(self):
|
||||
pass
|
||||
def get_sql(self,**args) :
|
||||
"""
|
||||
This function returns the SQL Query that will compute marketer and prosecutor risk
|
||||
@param key key fields (patient identifier)
|
||||
@param table table that is subject of the computation
|
||||
"""
|
||||
key = args['key']
|
||||
table = args['table']
|
||||
fields = list(set(table['fields']) - set([key]))
|
||||
#-- We need to select n-fields max 64
|
||||
k = len(fields)
|
||||
n = np.random.randint(2,24) #-- how many random fields are we processing
|
||||
ii = np.random.choice(k,n,replace=False)
|
||||
fields = list(np.array(fields)[ii])
|
||||
|
||||
sql = """
|
||||
SELECT COUNT(g_size) as group_count, SUM(g_size) as patient_count, COUNT(g_size)/SUM(g_size) as marketer, 1/ MIN(g_size) as prosecutor
|
||||
FROM (
|
||||
SELECT COUNT(*) as g_size,:key,:fields
|
||||
FROM :full_name
|
||||
GROUP BY :key,:fields
|
||||
)
|
||||
""".replace(":fields", ",".join(fields)).replace(":full_name",table['full_name']).replace(":key",key).replace(":n",str(n))
|
||||
return sql
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
if 'action' in SYS_ARGS and SYS_ARGS['action'] in ['create','compute'] :
|
||||
|
||||
path = SYS_ARGS['path']
|
||||
client = bq.Client.from_service_account_json(path)
|
||||
i_dataset = SYS_ARGS['i_dataset']
|
||||
key = SYS_ARGS['key']
|
||||
|
||||
mytools = utils(client = client)
|
||||
tables = mytools.get_tables(dataset=i_dataset,client=client,key=key)
|
||||
# print len(tables)
|
||||
# tables = tables[:6]
|
||||
|
||||
if SYS_ARGS['action'] == 'create' :
|
||||
#usage:
|
||||
# create --i_dataset <in dataset> --key <patient id> --o_dataset <out dataset> --table <table|file> [--file] --path <bq JSON account file>
|
||||
#
|
||||
create_sql = mytools.get_sql(tables=tables,key=key) #-- The create statement
|
||||
o_dataset = SYS_ARGS['o_dataset']
|
||||
table = SYS_ARGS['table']
|
||||
if 'file' in SYS_ARGS :
|
||||
f = open(table+'.sql','w')
|
||||
f.write(create_sql)
|
||||
f.close()
|
||||
else:
|
||||
job = bq.QueryJobConfig()
|
||||
job.destination = client.dataset(o_dataset).table(table)
|
||||
job.use_query_cache = True
|
||||
job.allow_large_results = True
|
||||
job.priority = 'BATCH'
|
||||
job.time_partitioning = bq.table.TimePartitioning(type_=bq.table.TimePartitioningType.DAY)
|
||||
|
||||
r = client.query(create_sql,location='US',job_config=job)
|
||||
|
||||
print [r.job_id,' ** ',r.state]
|
||||
else:
|
||||
#
|
||||
#
|
||||
tables = [tab for tab in tables if tab['name'] == SYS_ARGS['table'] ]
|
||||
if tables :
|
||||
risk = risk()
|
||||
df = pd.DataFrame()
|
||||
for i in range(0,10) :
|
||||
sql = risk.get_sql(key=SYS_ARGS['key'],table=tables[0])
|
||||
df = df.append(pd.read_gbq(query=sql,private_key=path,dialect='standard'))
|
||||
df.to_csv(SYS_ARGS['table']+'.csv')
|
||||
print [i,' ** ',df.shape[0]]
|
||||
time.sleep(2)
|
||||
|
||||
pass
|
||||
else:
|
||||
print 'ERROR'
|
||||
pass
|
||||
|
||||
# r = risk(path='/home/steve/dev/google-cloud-sdk/accounts/vumc-test.json', i_dataset='raw',o_dataset='risk_o',o_table='mo')
|
||||
# tables = r.get_tables('raw','person_id')
|
||||
# sql = r.get_sql(tables=tables[:3],key='person_id')
|
||||
# #
|
||||
# # let's post this to a designated location
|
||||
# #
|
||||
# f = open('foo.sql','w')
|
||||
# f.write(sql)
|
||||
# f.close()
|
||||
# r.get_sql(tables=tables,key='person_id')
|
||||
# p = r.compute()
|
||||
# print p
|
||||
# p.to_csv("risk.csv")
|
||||
# r.write('foo.sql')
|
Loading…
Reference in New Issue