bug fix with documentation
This commit is contained in:
parent
30fe9cf9fc
commit
25b30d2c2b
|
@ -39,10 +39,10 @@ The framework will depend on pandas and numpy (for now). Below is a basic sample
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from pandas_risk import *
|
import risk
|
||||||
|
|
||||||
mydf = pd.DataFrame({"x":np.random.choice( np.random.randint(1,10),50),"y":np.random.choice( np.random.randint(1,10),50),"z":np.random.choice( np.random.randint(1,10),50),"r":np.random.choice( np.random.randint(1,10),50) })
|
mydf = pd.DataFrame({"x":np.random.choice( np.random.randint(1,10),50),"y":np.random.choice( np.random.randint(1,10),50),"z":np.random.choice( np.random.randint(1,10),50),"r":np.random.choice( np.random.randint(1,10),50) })
|
||||||
print mydf.risk.evaluate()
|
print (mydf.risk.evaluate())
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -52,7 +52,7 @@ The framework will depend on pandas and numpy (for now). Below is a basic sample
|
||||||
# - Insure the fields are identical in both sample and population
|
# - Insure the fields are identical in both sample and population
|
||||||
#
|
#
|
||||||
pop = pd.DataFrame({"x":np.random.choice( np.random.randint(1,10),150),"y":np.random.choice( np.random.randint(1,10),150) ,"z":np.random.choice( np.random.randint(1,10),150),"r":np.random.choice( np.random.randint(1,10),150)})
|
pop = pd.DataFrame({"x":np.random.choice( np.random.randint(1,10),150),"y":np.random.choice( np.random.randint(1,10),150) ,"z":np.random.choice( np.random.randint(1,10),150),"r":np.random.choice( np.random.randint(1,10),150)})
|
||||||
mydf.risk.evaluate(pop=pop)
|
print (mydf.risk.evaluate(pop=pop))
|
||||||
|
|
||||||
|
|
||||||
@TODO:
|
@TODO:
|
||||||
|
|
|
@ -43,10 +43,10 @@ The framework will depend on pandas and numpy (for now). Below is a basic sample
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from pandas_risk import *
|
import risk
|
||||||
|
|
||||||
mydf = pd.DataFrame({"x":np.random.choice( np.random.randint(1,10),50),"y":np.random.choice( np.random.randint(1,10),50),"z":np.random.choice( np.random.randint(1,10),50),"r":np.random.choice( np.random.randint(1,10),50) })
|
mydf = pd.DataFrame({"x":np.random.choice( np.random.randint(1,10),50),"y":np.random.choice( np.random.randint(1,10),50),"z":np.random.choice( np.random.randint(1,10),50),"r":np.random.choice( np.random.randint(1,10),50) })
|
||||||
print mydf.risk.evaluate()
|
print (mydf.risk.evaluate())
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -56,7 +56,7 @@ The framework will depend on pandas and numpy (for now). Below is a basic sample
|
||||||
# - Insure the fields are identical in both sample and population
|
# - Insure the fields are identical in both sample and population
|
||||||
#
|
#
|
||||||
pop = pd.DataFrame({"x":np.random.choice( np.random.randint(1,10),150),"y":np.random.choice( np.random.randint(1,10),150) ,"z":np.random.choice( np.random.randint(1,10),150),"r":np.random.choice( np.random.randint(1,10),150)})
|
pop = pd.DataFrame({"x":np.random.choice( np.random.randint(1,10),150),"y":np.random.choice( np.random.randint(1,10),150) ,"z":np.random.choice( np.random.randint(1,10),150),"r":np.random.choice( np.random.randint(1,10),150)})
|
||||||
mydf.risk.evaluate(pop=pop)
|
print (mydf.risk.evaluate(pop=pop))
|
||||||
|
|
||||||
|
|
||||||
@TODO:
|
@TODO:
|
||||||
|
|
Loading…
Reference in New Issue