Merge branch 'dev' of hiplab/privacykit into master
This commit is contained in:
commit
c167058c23
16
README.md
16
README.md
|
@ -3,6 +3,8 @@
|
||||||
This framework computes re-identification risk of a dataset by extending pandas. It works like a pandas **add-on**
|
This framework computes re-identification risk of a dataset by extending pandas. It works like a pandas **add-on**
|
||||||
The framework will compute the following risk measures: marketer, prosecutor, journalist and pitman risk. References for the risk measures can be found on [http://ehelthinformation.ca] (http://www.ehealthinformation.ca/wp-content/uploads/2014/08/2009-De-identification-PA-whitepaper1.pdf) and [https://www.scb.se/contentassets](https://www.scb.se/contentassets/ff271eeeca694f47ae99b942de61df83/applying-pitmans-sampling-formula-to-microdata-disclosure-risk-assessment.pdf)
|
The framework will compute the following risk measures: marketer, prosecutor, journalist and pitman risk. References for the risk measures can be found on [http://ehelthinformation.ca] (http://www.ehealthinformation.ca/wp-content/uploads/2014/08/2009-De-identification-PA-whitepaper1.pdf) and [https://www.scb.se/contentassets](https://www.scb.se/contentassets/ff271eeeca694f47ae99b942de61df83/applying-pitmans-sampling-formula-to-microdata-disclosure-risk-assessment.pdf)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
There are two modes available :
|
There are two modes available :
|
||||||
|
|
||||||
**explore:**
|
**explore:**
|
||||||
|
@ -16,10 +18,10 @@ Here the assumption is that we are clear on the sets of attributes to be used an
|
||||||
|
|
||||||
### Four risk measures are computed :
|
### Four risk measures are computed :
|
||||||
|
|
||||||
- Marketer risk
|
- Marketer risk
|
||||||
- Prosecutor risk
|
- Prosecutor risk
|
||||||
- Journalist risk
|
- Journalist risk
|
||||||
- Pitman Risk
|
- Pitman Risk [Video tutorial,by Dr. Weiyi Xia](https://www.loom.com/share/173e109ecac64d37a54f09b103bc6681) and [Publication by Dr. Nobuaki Hoshino](https://www.scb.se/contentassets/ff271eeeca694f47ae99b942de61df83/applying-pitmans-sampling-formula-to-microdata-disclosure-risk-assessment.pdf)
|
||||||
|
|
||||||
### Usage:
|
### Usage:
|
||||||
|
|
||||||
|
@ -27,19 +29,19 @@ Install this package using pip as follows :
|
||||||
|
|
||||||
Stable :
|
Stable :
|
||||||
|
|
||||||
pip install git+https://hiplab.mc.vanderbilt.edu/git/steve/deid-risk.git
|
pip install git+https://dev.the-phi.com/git/healthcareio/privacykit.git@release
|
||||||
|
|
||||||
|
|
||||||
Latest Development (not fully tested):
|
Latest Development (not fully tested):
|
||||||
|
|
||||||
pip install git+https://hiplab.mc.vanderbilt.edu/git/steve/deid-risk.git@risk
|
pip install git+https://dev.the-phi.com/git/healthcareio/privacykit.git@dev
|
||||||
|
|
||||||
The framework will depend on pandas and numpy (for now). Below is a basic sample to get started quickly.
|
The framework will depend on pandas and numpy (for now). Below is a basic sample to get started quickly.
|
||||||
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import risk
|
import privacykit
|
||||||
|
|
||||||
mydf = pd.DataFrame({"x":np.random.choice( np.random.randint(1,10),50),"y":np.random.choice( np.random.randint(1,10),50),"z":np.random.choice( np.random.randint(1,10),50),"r":np.random.choice( np.random.randint(1,10),50) })
|
mydf = pd.DataFrame({"x":np.random.choice( np.random.randint(1,10),50),"y":np.random.choice( np.random.randint(1,10),50),"z":np.random.choice( np.random.randint(1,10),50),"r":np.random.choice( np.random.randint(1,10),50) })
|
||||||
print (mydf.risk.evaluate())
|
print (mydf.risk.evaluate())
|
||||||
|
|
|
@ -43,6 +43,10 @@ from datetime import datetime
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
from itertools import combinations
|
from itertools import combinations
|
||||||
|
# class Compute:
|
||||||
|
# pass
|
||||||
|
# class Population(Compute):
|
||||||
|
# pass
|
||||||
|
|
||||||
@pd.api.extensions.register_dataframe_accessor("risk")
|
@pd.api.extensions.register_dataframe_accessor("risk")
|
||||||
class deid :
|
class deid :
|
||||||
|
@ -57,6 +61,16 @@ class deid :
|
||||||
#
|
#
|
||||||
values = df.apply(lambda col: col.unique().size / df.shape[0])
|
values = df.apply(lambda col: col.unique().size / df.shape[0])
|
||||||
self._dinfo = dict(zip(df.columns.tolist(),values))
|
self._dinfo = dict(zip(df.columns.tolist(),values))
|
||||||
|
# self.sample = self._df
|
||||||
|
self.init(sample=self._df)
|
||||||
|
def init(self,**_args):
|
||||||
|
_sample = _args['sample'] if 'sample' in _args else self._df
|
||||||
|
_columns = [] if 'columns' not in _args else _args['columns']
|
||||||
|
if _columns :
|
||||||
|
self._compute = Compute(sample = _sample,columns=_columns)
|
||||||
|
else:
|
||||||
|
self._comput = Compute(sample=_sample)
|
||||||
|
self._pcompute= Population()
|
||||||
|
|
||||||
def explore(self,**args):
|
def explore(self,**args):
|
||||||
"""
|
"""
|
||||||
|
@ -107,40 +121,45 @@ class deid :
|
||||||
for size in np.arange(2,len(columns)) :
|
for size in np.arange(2,len(columns)) :
|
||||||
p = list(combinations(columns,size))
|
p = list(combinations(columns,size))
|
||||||
p = (np.array(p)[ np.random.choice( len(p), _policy_count)].tolist())
|
p = (np.array(p)[ np.random.choice( len(p), _policy_count)].tolist())
|
||||||
flag = 'Policy_'+str(_index)
|
|
||||||
_index += 1
|
|
||||||
for cols in p :
|
for cols in p :
|
||||||
|
flag = 'Policy_'+str(_index)
|
||||||
r = self.evaluate(sample=sample,cols=cols,flag = flag)
|
r = self.evaluate(sample=sample,cols=cols,flag = flag)
|
||||||
p = pd.DataFrame(1*sample.columns.isin(cols)).T
|
p = pd.DataFrame(1*sample.columns.isin(cols)).T
|
||||||
p.columns = sample.columns
|
p.columns = sample.columns
|
||||||
o = pd.concat([o,r.join(p)])
|
o = pd.concat([o,r.join(p)])
|
||||||
|
|
||||||
|
|
||||||
# for i in np.arange(RUNS):
|
|
||||||
# if 'strict' not in args or ('strict' in args and args['strict'] is False):
|
|
||||||
# n = np.random.randint(2,k)
|
|
||||||
# else:
|
|
||||||
# n = args['field_count']
|
|
||||||
# cols = np.random.choice(columns,n,replace=False).tolist()
|
|
||||||
# params = {'sample':sample,'cols':cols}
|
|
||||||
# if pop is not None :
|
|
||||||
# params['pop'] = pop
|
|
||||||
# if pop_size > 0 :
|
|
||||||
# params['pop_size'] = pop_size
|
|
||||||
|
|
||||||
# r = self.evaluate(**params)
|
o['attributes'] = ','.join(cols)
|
||||||
# #
|
# o['attr'] = ','.join(r.apply())
|
||||||
# # let's put the policy in place
|
_index += 1
|
||||||
# p = pd.DataFrame(1*sample.columns.isin(cols)).T
|
#
|
||||||
# p.columns = sample.columns
|
# We rename flags to policies and adequately number them, we also have a column to summarize the attributes attr
|
||||||
# # o = o.append(r.join(p))
|
#
|
||||||
# o = pd.concat([o,r.join(p)])
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
o.index = np.arange(o.shape[0]).astype(np.int64)
|
o.index = np.arange(o.shape[0]).astype(np.int64)
|
||||||
|
o = o.rename(columns={'flag':'policies'})
|
||||||
return o
|
return o
|
||||||
def evaluate(self, **args):
|
def evaluate(self,**_args):
|
||||||
|
_measure = {}
|
||||||
|
|
||||||
|
self.init(**_args)
|
||||||
|
_names = ['marketer','journalist','prosecutor'] #+ (['pitman'] if 'pop_size' in _args else [])
|
||||||
|
for label in _names :
|
||||||
|
_pointer = getattr(self,label)
|
||||||
|
_measure[label] = _pointer(**_args)
|
||||||
|
|
||||||
|
_measure['fields'] = self._compute.cache['count']['fields']
|
||||||
|
_measure['groups'] = self._compute.cache['count']['groups']
|
||||||
|
_measure['rows'] = self._compute.cache['count']['rows']
|
||||||
|
if 'attr' in _args :
|
||||||
|
_measure = dict(_args['attr'],**_measure)
|
||||||
|
|
||||||
|
return pd.DataFrame([_measure])
|
||||||
|
def _evaluate(self, **args):
|
||||||
"""
|
"""
|
||||||
This function has the ability to evaluate risk associated with either a population or a sample dataset
|
This function has the ability to evaluate risk associated with either a population or a sample dataset
|
||||||
:sample sample dataset
|
:sample sample dataset
|
||||||
|
@ -170,7 +189,7 @@ class deid :
|
||||||
r = {"flag":flag}
|
r = {"flag":flag}
|
||||||
# if sample :
|
# if sample :
|
||||||
|
|
||||||
handle_sample = Sample()
|
handle_sample = Compute()
|
||||||
xi = sample.groupby(cols,as_index=False).count().values
|
xi = sample.groupby(cols,as_index=False).count().values
|
||||||
|
|
||||||
handle_sample.set('groups',xi)
|
handle_sample.set('groups',xi)
|
||||||
|
@ -226,7 +245,83 @@ class deid :
|
||||||
#
|
#
|
||||||
r['field count'] = len(cols)
|
r['field count'] = len(cols)
|
||||||
return pd.DataFrame([r])
|
return pd.DataFrame([r])
|
||||||
|
|
||||||
|
def marketer(self,**_args):
|
||||||
|
"""
|
||||||
|
This function delegates the calls to compute marketer risk of a given dataset or sample
|
||||||
|
:sample optional sample dataset
|
||||||
|
:columns optional columns of the dataset, if non is provided and inference will be made using non-unique columns
|
||||||
|
"""
|
||||||
|
if 'pop' not in _args :
|
||||||
|
if not 'sample' in _args and not 'columns' in _args :
|
||||||
|
# _handler = self._compute
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
|
||||||
|
self.init(**_args)
|
||||||
|
# _handler = Compute(**_args)
|
||||||
|
_handler = self._compute
|
||||||
|
|
||||||
|
else:
|
||||||
|
#
|
||||||
|
# Computing population estimates for the population
|
||||||
|
self._pcompute.init(**_args)
|
||||||
|
handler = self._pcompute
|
||||||
|
return _handler.marketer()
|
||||||
|
def journalist(self,**_args):
|
||||||
|
"""
|
||||||
|
This function delegates the calls to compute journalist risk of a given dataset or sample
|
||||||
|
:sample optional sample dataset
|
||||||
|
:columns optional columns of the dataset, if non is provided and inference will be made using non-unique columns
|
||||||
|
"""
|
||||||
|
if 'pop' not in _args :
|
||||||
|
if not 'sample' in _args and not 'columns' in _args :
|
||||||
|
_handler = self._compute
|
||||||
|
else:
|
||||||
|
self.init(**_args)
|
||||||
|
# _handler = Compute(**_args)
|
||||||
|
_handler = self._compute
|
||||||
|
# return _compute.journalist()
|
||||||
|
else:
|
||||||
|
self._pcompute.init(**_args)
|
||||||
|
_handler = self._pcompute
|
||||||
|
return _handler.journalist()
|
||||||
|
def prosecutor(self,**_args):
|
||||||
|
"""
|
||||||
|
This function delegates the calls to compute prosecutor risk of a given dataset or sample
|
||||||
|
:sample optional sample dataset
|
||||||
|
:columns optional columns of the dataset, if non is provided and inference will be made using non-unique columns
|
||||||
|
"""
|
||||||
|
if 'pop' not in _args :
|
||||||
|
if not 'sample' in _args and not 'columns' in _args :
|
||||||
|
# _handler = self._compute
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
self.init(**_args)
|
||||||
|
# _handler = Compute(**_args)
|
||||||
|
_handler = self._compute
|
||||||
|
|
||||||
|
else:
|
||||||
|
self._pcompute.init(**_args)
|
||||||
|
_handler = self._pcompute
|
||||||
|
return _handler.prosecutor()
|
||||||
|
def pitman(self,**_args):
|
||||||
|
|
||||||
|
if 'population' not in _args :
|
||||||
|
pop_size = int(_args['pop_size'])
|
||||||
|
self._compute.set('pop_size',pop_size)
|
||||||
|
_handler = self._compute;
|
||||||
|
else:
|
||||||
|
self._pcompute.init(**_args)
|
||||||
|
_handler = self._pcompute
|
||||||
|
|
||||||
|
return _handler.pitman()
|
||||||
|
|
||||||
|
# xi = pd.DataFrame({"sample_group_size":sample.groupby(cols,as_index=False).count()}).reset_index()
|
||||||
|
# yi = pd.DataFrame({"population_group_size":args['pop'].groupby(cols,as_index=False).size()}).reset_index()
|
||||||
|
# merged_groups = pd.merge(xi,yi,on=cols,how='inner')
|
||||||
|
# handle_population= Population()
|
||||||
|
# handle_population.set('merged_groups',merged_groups)
|
||||||
class Risk :
|
class Risk :
|
||||||
"""
|
"""
|
||||||
This class is an abstraction of how we chose to structure risk computation i.e in 2 sub classes:
|
This class is an abstraction of how we chose to structure risk computation i.e in 2 sub classes:
|
||||||
|
@ -240,24 +335,44 @@ class Risk :
|
||||||
self.cache[id] = {}
|
self.cache[id] = {}
|
||||||
self.cache[key] = value
|
self.cache[key] = value
|
||||||
|
|
||||||
class Sample(Risk):
|
class Compute(Risk):
|
||||||
"""
|
"""
|
||||||
This class will compute risk for the sample dataset: the marketer and prosecutor risk are computed by default.
|
This class will compute risk for the sample dataset: the marketer and prosecutor risk are computed by default.
|
||||||
This class can optionally add pitman risk if the population size is known.
|
This class can optionally add pitman risk if the population size is known.
|
||||||
"""
|
"""
|
||||||
def __init__(self):
|
def __init__(self,**_args):
|
||||||
Risk.__init__(self)
|
super().__init__()
|
||||||
|
self._sample = _args['sample'] if 'sample' in _args else pd.DataFrame()
|
||||||
|
self._columns= _args['columns'] if 'columns' in _args else None
|
||||||
|
self.cache['count'] = {'groups':0,'fields':0,'rows':0}
|
||||||
|
if not self._columns :
|
||||||
|
values = self._sample.apply(lambda col: col.unique().size / self._sample.shape[0])
|
||||||
|
self._dinfo = dict(zip(self._sample.columns.tolist(),values))
|
||||||
|
self._columns = [key for key in self._dinfo if self._dinfo[key] < 1]
|
||||||
|
#
|
||||||
|
# At this point we have all the columns that are valid candidates even if the user didn't specify them
|
||||||
|
self.cache['count']['fields'] = len(self._columns)
|
||||||
|
if self._sample.shape[0] > 0 and self._columns:
|
||||||
|
_sample = _args ['sample']
|
||||||
|
_groups = self._sample.groupby(self._columns,as_index=False).count().values
|
||||||
|
self.set('groups',_groups)
|
||||||
|
|
||||||
|
self.cache['count']['groups'] = len(_groups)
|
||||||
|
self.cache['count']['rows'] = np.sum([_g[-1] for _g in _groups])
|
||||||
|
|
||||||
def marketer(self):
|
def marketer(self):
|
||||||
"""
|
"""
|
||||||
computing marketer risk for sample dataset
|
computing marketer risk for sample dataset
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
groups = self.cache['groups']
|
groups = self.cache['groups']
|
||||||
# group_count = groups.size
|
# group_count = groups.size
|
||||||
# row_count = groups.sum()
|
# row_count = groups.sum()
|
||||||
group_count = len(groups)
|
# group_count = len(groups)
|
||||||
row_count = np.sum([_g[-1] for _g in groups])
|
group_count = self.cache['count']['groups']
|
||||||
|
# row_count = np.sum([_g[-1] for _g in groups])
|
||||||
|
row_count = self.cache['count']['rows']
|
||||||
return group_count / np.float64(row_count)
|
return group_count / np.float64(row_count)
|
||||||
|
|
||||||
def prosecutor(self):
|
def prosecutor(self):
|
||||||
|
@ -272,40 +387,52 @@ class Sample(Risk):
|
||||||
def unique_ratio(self):
|
def unique_ratio(self):
|
||||||
groups = self.cache['groups']
|
groups = self.cache['groups']
|
||||||
# row_count = groups.sum()
|
# row_count = groups.sum()
|
||||||
row_count = np.sum([_g[-1] for _g in groups])
|
# row_count = np.sum([_g[-1] for _g in groups])
|
||||||
|
row_count = self.cache['count']['rows']
|
||||||
# return groups[groups == 1].sum() / np.float64(row_count)
|
# return groups[groups == 1].sum() / np.float64(row_count)
|
||||||
values = [_g[-1] for _g in groups if _g[-1] == 1]
|
values = [_g[-1] for _g in groups if _g[-1] == 1]
|
||||||
|
|
||||||
return np.sum(values) / np.float64(row_count)
|
return np.sum(values) / np.float64(row_count)
|
||||||
|
def journalist(self):
|
||||||
|
return self.unique_ratio()
|
||||||
def pitman(self):
|
def pitman(self):
|
||||||
"""
|
"""
|
||||||
This function will approximate pitman de-identification risk based on pitman sampling
|
This function will approximate pitman de-identification risk based on pitman sampling
|
||||||
"""
|
"""
|
||||||
|
|
||||||
groups = self.cache['groups']
|
groups = self.cache['groups']
|
||||||
|
print (self.cache['pop_size'])
|
||||||
si = groups[groups == 1].size
|
si = groups[groups == 1].size
|
||||||
# u = groups.size
|
# u = groups.size
|
||||||
u = len(groups)
|
u = len(groups)
|
||||||
alpha = np.divide(si , np.float64(u) )
|
alpha = np.divide(si , np.float64(u) )
|
||||||
row_count = np.sum([_g[-1] for _g in groups])
|
# row_count = np.sum([_g[-1] for _g in groups])
|
||||||
|
row_count = self.cache['count']['rows']
|
||||||
|
|
||||||
# f = np.divide(groups.sum(), np.float64(self.cache['pop_size']))
|
# f = np.divide(groups.sum(), np.float64(self.cache['pop_size']))
|
||||||
f = np.divide(row_count, np.float64(self.cache['pop_size']))
|
f = np.divide(row_count, np.float64(self.cache['pop_size']))
|
||||||
return np.power(f,1-alpha)
|
return np.power(f,1-alpha)
|
||||||
|
|
||||||
class Population(Sample):
|
class Population(Compute):
|
||||||
"""
|
"""
|
||||||
This class will compute risk for datasets that have population information or datasets associated with them.
|
This class will compute risk for datasets that have population information or datasets associated with them.
|
||||||
This computation includes pitman risk (it requires minimal information about population)
|
This computation includes pitman risk (it requires minimal information about population)
|
||||||
"""
|
"""
|
||||||
def __init__(self,**args):
|
def __init__(self,**_args):
|
||||||
Sample.__init__(self)
|
super().__init__(**_args)
|
||||||
|
|
||||||
|
def init(self,**_args):
|
||||||
|
xi = pd.DataFrame({"sample_group_size":self._sample.groupby(self._columns,as_index=False).count()}).reset_index()
|
||||||
|
yi = pd.DataFrame({"population_group_size":_args['population'].groupby(self._columns,as_index=False).size()}).reset_index()
|
||||||
|
merged_groups = pd.merge(xi,yi,on=self._columns,how='inner')
|
||||||
|
self.set('merged_groups',merged_groups)
|
||||||
|
|
||||||
def set(self,key,value):
|
def set(self,key,value):
|
||||||
Sample.set(self,key,value)
|
self.set(self,key,value)
|
||||||
if key == 'merged_groups' :
|
if key == 'merged_groups' :
|
||||||
|
|
||||||
Sample.set(self,'pop_size',np.float64(value.population_group_size.sum()) )
|
self.set(self,'pop_size',np.float64(value.population_group_size.sum()) )
|
||||||
Sample.set(self,'groups',value.sample_group_size)
|
self.set(self,'groups',value.sample_group_size)
|
||||||
"""
|
"""
|
||||||
This class will measure risk and account for the existance of a population
|
This class will measure risk and account for the existance of a population
|
||||||
:merged_groups {sample_group_size, population_group_size} is a merged dataset with group sizes of both population and sample
|
:merged_groups {sample_group_size, population_group_size} is a merged dataset with group sizes of both population and sample
|
||||||
|
@ -314,6 +441,7 @@ class Population(Sample):
|
||||||
"""
|
"""
|
||||||
This function requires
|
This function requires
|
||||||
"""
|
"""
|
||||||
|
|
||||||
r = self.cache['merged_groups']
|
r = self.cache['merged_groups']
|
||||||
sample_row_count = r.sample_group_size.sum()
|
sample_row_count = r.sample_group_size.sum()
|
||||||
#
|
#
|
||||||
|
|
6
setup.py
6
setup.py
|
@ -4,11 +4,11 @@ This is a build file for the
|
||||||
from setuptools import setup, find_packages
|
from setuptools import setup, find_packages
|
||||||
|
|
||||||
setup(
|
setup(
|
||||||
name = "risk",
|
name = "privacykit",
|
||||||
version = "0.8.1",
|
version = "0.9.0",
|
||||||
author = "Healthcare/IO - The Phi Technology LLC & Health Information Privacy Lab",
|
author = "Healthcare/IO - The Phi Technology LLC & Health Information Privacy Lab",
|
||||||
author_email = "info@the-phi.com",
|
author_email = "info@the-phi.com",
|
||||||
license = "MIT",
|
license = "MIT",
|
||||||
packages=['risk'],
|
packages=['privacykit'],
|
||||||
install_requires = ['numpy','pandas']
|
install_requires = ['numpy','pandas']
|
||||||
)
|
)
|
||||||
|
|
Loading…
Reference in New Issue