coqui-tts/recipes/ljspeech
Eren Gölge 37959ad0c7 Make linter 2021-09-30 23:02:16 +00:00
..
align_tts Update `align_tts` for trainer_v2 2021-09-30 14:18:10 +00:00
fast_pitch Update ForwardTTS for Trainer_v2 2021-09-30 14:19:19 +00:00
fast_speech Update ForwardTTS for Trainer_v2 2021-09-30 14:19:19 +00:00
glow_tts Update GlowTTS 2021-09-30 14:47:56 +00:00
hifigan Update GAN for Trainer_v2 2021-09-30 14:47:56 +00:00
multiband_melgan Update GAN for Trainer_v2 2021-09-30 14:47:56 +00:00
speedy_speech Make linter 2021-09-30 23:02:16 +00:00
tacotron2-DCA Remove old Tacotron recipes 2021-09-30 14:47:56 +00:00
tacotron2-DDC Remove old Tacotron recipes 2021-09-30 14:47:56 +00:00
univnet Fix imports 2021-09-30 14:47:56 +00:00
vits_tts Fix imports 2021-09-30 14:47:56 +00:00
wavegrad Fix imports 2021-09-30 14:47:56 +00:00
wavernn Fix imports 2021-09-30 14:47:56 +00:00
README.md Create LJSpeech recipes for all the models 2021-06-22 16:21:11 +02:00
download_ljspeech.sh Create LJSpeech recipes for all the models 2021-06-22 16:21:11 +02:00

README.md

🐸💬 TTS LJspeech Recipes

For running the recipes

  1. Download the LJSpeech dataset here either manually from its official website or using download_ljspeech.sh.

  2. Go to your desired model folder and run the training.

    Running Python files. (Choose the desired GPU ID for your run and set CUDA_VISIBLE_DEVICES)

    CUDA_VISIBLE_DEVICES="0" python train_modelX.py
    

    Running bash scripts.

    bash run.sh
    

💡 Note that these runs are just templates to help you start training your first model. They are not optimized for the best result. Double-check the configurations and feel free to share your experiments to find better parameters together 💪.