mirror of https://github.com/coqui-ai/TTS.git
409 lines
13 KiB
Plaintext
409 lines
13 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"This is to test TTS models with benchmark sentences for speech synthesis.\n",
|
||
"\n",
|
||
"Before running this script please DON'T FORGET: \n",
|
||
"- to set file paths.\n",
|
||
"- to download related model files from TTS and WaveRNN.\n",
|
||
"- to checkout right commit versions (given next to the model) of TTS and WaveRNN.\n",
|
||
"- to set the right paths in the cell below.\n",
|
||
"\n",
|
||
"Repositories:\n",
|
||
"- TTS: https://github.com/mozilla/TTS\n",
|
||
"- WaveRNN: https://github.com/erogol/WaveRNN"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"TTS_PATH = \"/home/erogol/projects/\"\n",
|
||
"WAVERNN_PATH =\"/home/erogol/projects/\""
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {
|
||
"scrolled": true
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"%load_ext autoreload\n",
|
||
"%autoreload 2\n",
|
||
"import os\n",
|
||
"import sys\n",
|
||
"import io\n",
|
||
"import torch \n",
|
||
"import time\n",
|
||
"import json\n",
|
||
"import numpy as np\n",
|
||
"from collections import OrderedDict\n",
|
||
"from matplotlib import pylab as plt\n",
|
||
"\n",
|
||
"%pylab inline\n",
|
||
"rcParams[\"figure.figsize\"] = (16,5)\n",
|
||
"\n",
|
||
"# add libraries into environment\n",
|
||
"sys.path.append(TTS_PATH) # set this if TTS is not installed globally\n",
|
||
"sys.path.append(WAVERNN_PATH) # set this if TTS is not installed globally\n",
|
||
"\n",
|
||
"import librosa\n",
|
||
"import librosa.display\n",
|
||
"\n",
|
||
"from TTS.models.tacotron import Tacotron \n",
|
||
"from TTS.layers import *\n",
|
||
"from TTS.utils.data import *\n",
|
||
"from TTS.utils.audio import AudioProcessor\n",
|
||
"from TTS.utils.generic_utils import load_config, setup_model\n",
|
||
"from TTS.utils.text import text_to_sequence\n",
|
||
"from TTS.utils.synthesis import synthesis\n",
|
||
"from TTS.utils.visual import visualize\n",
|
||
"\n",
|
||
"import IPython\n",
|
||
"from IPython.display import Audio\n",
|
||
"\n",
|
||
"import os\n",
|
||
"os.environ['CUDA_VISIBLE_DEVICES']='1'"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"def tts(model, text, CONFIG, use_cuda, ap, use_gl, figures=True):\n",
|
||
" t_1 = time.time()\n",
|
||
" waveform, alignment, mel_spec, mel_postnet_spec, stop_tokens = synthesis(model, text, CONFIG, use_cuda, ap, speaker_id, False, CONFIG.enable_eos_bos_chars)\n",
|
||
" if CONFIG.model == \"Tacotron\" and not use_gl:\n",
|
||
" # coorect the normalization differences b/w TTS and the Vocoder.\n",
|
||
" mel_postnet_spec = ap.out_linear_to_mel(mel_postnet_spec.T).T\n",
|
||
" mel_postnet_spec = ap._denormalize(mel_postnet_spec)\n",
|
||
" mel_postnet_spec = ap_vocoder._normalize(mel_postnet_spec)\n",
|
||
" if not use_gl:\n",
|
||
" waveform = wavernn.generate(torch.FloatTensor(mel_postnet_spec.T).unsqueeze(0).cuda(), batched=batched_wavernn, target=11000, overlap=550)\n",
|
||
"\n",
|
||
" print(\" > Run-time: {}\".format(time.time() - t_1))\n",
|
||
" if figures: \n",
|
||
" visualize(alignment, mel_postnet_spec, stop_tokens, text, ap.hop_length, CONFIG, mel_spec) \n",
|
||
" IPython.display.display(Audio(waveform, rate=CONFIG.audio['sample_rate'])) \n",
|
||
" os.makedirs(OUT_FOLDER, exist_ok=True)\n",
|
||
" file_name = text.replace(\" \", \"_\").replace(\".\",\"\") + \".wav\"\n",
|
||
" out_path = os.path.join(OUT_FOLDER, file_name)\n",
|
||
" ap.save_wav(waveform, out_path)\n",
|
||
" return alignment, mel_postnet_spec, stop_tokens, waveform"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Set constants\n",
|
||
"ROOT_PATH = '/media/erogol/data_ssd/Models/libri_tts/5049/'\n",
|
||
"MODEL_PATH = ROOT_PATH + '/best_model.pth.tar'\n",
|
||
"CONFIG_PATH = ROOT_PATH + '/config.json'\n",
|
||
"OUT_FOLDER = '/home/erogol/Dropbox/AudioSamples/benchmark_samples/'\n",
|
||
"CONFIG = load_config(CONFIG_PATH)\n",
|
||
"VOCODER_MODEL_PATH = \"/media/erogol/data_ssd/Models/wavernn/universal/4910/best_model_16K.pth.tar\"\n",
|
||
"VOCODER_CONFIG_PATH = \"/media/erogol/data_ssd/Models/wavernn/universal/4910/config_16K.json\"\n",
|
||
"VOCODER_CONFIG = load_config(VOCODER_CONFIG_PATH)\n",
|
||
"use_cuda = False\n",
|
||
"\n",
|
||
"# Set some config fields manually for testing\n",
|
||
"# CONFIG.windowing = False\n",
|
||
"# CONFIG.prenet_dropout = False\n",
|
||
"# CONFIG.separate_stopnet = True\n",
|
||
"# CONFIG.use_forward_attn = True\n",
|
||
"# CONFIG.forward_attn_mask = True\n",
|
||
"# CONFIG.stopnet = True\n",
|
||
"\n",
|
||
"# Set the vocoder\n",
|
||
"use_gl = True # use GL if True\n",
|
||
"batched_wavernn = True # use batched wavernn inference if True"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# LOAD TTS MODEL\n",
|
||
"from utils.text.symbols import symbols, phonemes\n",
|
||
"\n",
|
||
"# multi speaker \n",
|
||
"if CONFIG.use_speaker_embedding:\n",
|
||
" speakers = json.load(open(f\"{ROOT_PATH}/speakers.json\", 'r'))\n",
|
||
" speakers_idx_to_id = {v: k for k, v in speakers.items()}\n",
|
||
"else:\n",
|
||
" speakers = []\n",
|
||
" speaker_id = None\n",
|
||
"\n",
|
||
"# load the model\n",
|
||
"num_chars = len(phonemes) if CONFIG.use_phonemes else len(symbols)\n",
|
||
"model = setup_model(num_chars, len(speakers), CONFIG)\n",
|
||
"\n",
|
||
"# load the audio processor\n",
|
||
"ap = AudioProcessor(**CONFIG.audio) \n",
|
||
"\n",
|
||
"\n",
|
||
"# load model state\n",
|
||
"if use_cuda:\n",
|
||
" cp = torch.load(MODEL_PATH)\n",
|
||
"else:\n",
|
||
" cp = torch.load(MODEL_PATH, map_location=lambda storage, loc: storage)\n",
|
||
"\n",
|
||
"# load the model\n",
|
||
"model.load_state_dict(cp['model'])\n",
|
||
"if use_cuda:\n",
|
||
" model.cuda()\n",
|
||
"model.eval()\n",
|
||
"print(cp['step'])\n",
|
||
"print(cp['r'])\n",
|
||
"\n",
|
||
"# set model stepsize \n",
|
||
"if 'r' in cp:\n",
|
||
" model.decoder.set_r(cp['r'])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# LOAD WAVERNN\n",
|
||
"if use_gl == False:\n",
|
||
" from WaveRNN.models.wavernn import Model\n",
|
||
" from WaveRNN.utils.audio import AudioProcessor as AudioProcessorVocoder\n",
|
||
" bits = 10\n",
|
||
" ap_vocoder = AudioProcessorVocoder(**VOCODER_CONFIG.audio) \n",
|
||
" wavernn = Model(\n",
|
||
" rnn_dims=512,\n",
|
||
" fc_dims=512,\n",
|
||
" mode=VOCODER_CONFIG.mode,\n",
|
||
" mulaw=VOCODER_CONFIG.mulaw,\n",
|
||
" pad=VOCODER_CONFIG.pad,\n",
|
||
" upsample_factors=VOCODER_CONFIG.upsample_factors,\n",
|
||
" feat_dims=VOCODER_CONFIG.audio[\"num_mels\"],\n",
|
||
" compute_dims=128,\n",
|
||
" res_out_dims=128,\n",
|
||
" res_blocks=10,\n",
|
||
" hop_length=ap_vocoder.hop_length,\n",
|
||
" sample_rate=ap_vocoder.sample_rate,\n",
|
||
" use_upsample_net = True,\n",
|
||
" use_aux_net = True\n",
|
||
" ).cuda()\n",
|
||
"\n",
|
||
" check = torch.load(VOCODER_MODEL_PATH)\n",
|
||
" wavernn.load_state_dict(check['model'], strict=False)\n",
|
||
" if use_cuda:\n",
|
||
" wavernn.cuda()\n",
|
||
" wavernn.eval();\n",
|
||
" print(check['step'])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Comparision with https://mycroft.ai/blog/available-voices/"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"model.eval()\n",
|
||
"model.decoder.max_decoder_steps = 2000\n",
|
||
"speaker_id = 500\n",
|
||
"sentence = \"Bill got in the habit of asking himself “Is that thought true?” and if he wasn’t absolutely certain it was, he just let it go.\"\n",
|
||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {
|
||
"scrolled": true
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"model.eval()\n",
|
||
"model.decoder.max_decoder_steps = 2000\n",
|
||
"sentence = \"Seine Fuerenden Berater hatten Donald Trump seit Wochen beschworen, berichteten US-Medien: Lassen Sie das mit den Zoellen bleiben.\"\n",
|
||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {
|
||
"scrolled": true
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"sentence = \"Der Klimawandel bedroht die Gletscher im Himalaya.\"\n",
|
||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"sentence = \"Zwei Unternehmen verlieren einem Medienbericht zufolge ihre Verträge als Maut-Inkasso-Manager.\" # 'echo' is not in training set. \n",
|
||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"sentence = \"Eine Ausländermaut nach dem Geschmack der CSU wird es nicht geben - das bedauert außerhalb der Partei fast niemand.\"\n",
|
||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {
|
||
"scrolled": true
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"sentence = \"Angela Merkel ist als Klimakanzlerin gestartet.\"\n",
|
||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Comparison with https://keithito.github.io/audio-samples/"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"sentence = \"Dann vernachlässigte sie das Thema.\"\n",
|
||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"sentence = \"Nun, kurz vor dem Ende, will sie damit noch einmal neu anfangen.\"\n",
|
||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"sentence = \"Nun ist der Spieltempel pleite, und manchen Dorfbewohnern fehlt das Geld zum Essen.\"\n",
|
||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"sentence = \"Andrea Nahles will in der Fraktion die Vertrauensfrage stellen.\"\n",
|
||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"sentence=\"Die Erfolge der Grünen bringen eine Reihe Unerfahrener in die Parlamente.\"\n",
|
||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Comparison with https://google.github.io/tacotron/publications/tacotron/index.html"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"sentence=\"Die Luftfahrtbranche arbeitet daran, CO2-neutral zu werden.\"\n",
|
||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"sentence=\"Michael Kretschmer versucht seit Monaten, die Bürger zu umgarnen.\"\n",
|
||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# !zip benchmark_samples/samples.zip benchmark_samples/*"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.7.3"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|